Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Cancer Sci ; 112(6): 2314-2324, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33792119

ABSTRACT

Mantle cell lymphoma (MCL) is a rare subtype of non-Hodgkin's lymphoma, which is characterized by overexpression of cyclin D1. Although novel drugs, such as ibrutinib, show promising clinical outcomes, relapsed MCL often acquires drug resistance. Therefore, alternative approaches for refractory and relapsed MCL are needed. Here, we examined whether a novel inhibitor of enhancer of zeste homologs 1 and 2 (EZH1/2), OR-S1 (a close analog of the clinical-stage compound valemetostat), had an antitumor effect on MCL cells. In an ibrutinib-resistant MCL patient-derived xenograft (PDX) mouse model, OR-S1 treatment by oral administration significantly inhibited MCL tumor growth, whereas ibrutinib did not. In vitro growth assays showed that compared with an established EZH2-specific inhibitor GSK126, OR-S1 had a marked antitumor effect on MCL cell lines. Furthermore, comprehensive gene expression analysis was performed using OR-S1-sensitive or insensitive MCL cell lines and showed that OR-S1 treatment modulated B-cell activation, differentiation, and cell cycle. In addition, we identified Cyclin Dependent Kinase Inhibitor 1C (CDKN1C, also known as p57, KIP2), which contributes to cell cycle arrest, as a direct target of EZH1/2 and showed that its expression influenced MCL cell proliferation. These results suggest that EZH1/2 may be a potential novel target for the treatment of aggressive ibrutinib-resistant MCL via CDKN1C-mediated cell cycle arrest.


Subject(s)
Adenine/analogs & derivatives , Antineoplastic Agents/pharmacology , Cyclin-Dependent Kinase Inhibitor p57/metabolism , Drug Resistance, Neoplasm/drug effects , Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors , Lymphoma, Mantle-Cell/drug therapy , Piperidines/pharmacology , Polycomb Repressive Complex 2/antagonists & inhibitors , Adenine/pharmacology , Adenine/therapeutic use , Animals , Antineoplastic Agents/therapeutic use , Cell Cycle Checkpoints/drug effects , Cell Cycle Checkpoints/genetics , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cyclin-Dependent Kinase Inhibitor p57/genetics , Gene Expression Regulation, Neoplastic/drug effects , Humans , Lymphoma, Mantle-Cell/genetics , Lymphoma, Mantle-Cell/pathology , Mice , Piperidines/therapeutic use , Syndecan-1/metabolism , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
2.
Blood Adv ; 3(7): 1047-1060, 2019 04 09.
Article in English | MEDLINE | ID: mdl-30944097

ABSTRACT

Chronic myelomonocytic leukemia (CMML) constitutes a hematopoietic stem cell (HSC) disorder characterized by prominent monocytosis and myelodysplasia. Although genome sequencing has revealed the CMML mutation profile, the mechanism of disease development remains unclear. Here we show that aberrant histone acetylation by nucleoporin-98 (NUP98)-HBO1, a newly identified fusion in a patient with CMML, is sufficient to generate clinically relevant CMML pathogenesis. Overexpression of NUP98-HBO1 in murine HSC/progenitors (HSC/Ps) induced diverse CMML phenotypes, such as severe leukocytosis, increased CD115+ Ly6Chigh monocytes (an equivalent subpopulation to human classical CD14+ CD16- monocytes), macrocytic anemia, thrombocytopenia, megakaryocyte-lineage dysplasia, splenomegaly, and cachexia. A NUP98-HBO1-mediated transcriptional signature in human CD34+ cells was specifically activated in HSC/Ps from a CMML patient cohort. Besides critical determinants of monocytic cell fate choice in HSC/Ps, an oncogenic HOXA9 signature was significantly activated by NUP98-HBO1 fusion through aberrant histone acetylation. Increased HOXA9 gene expression level with disease progression was confirmed in our CMML cohort. Genetic disruption of NUP98-HBO1 histone acetyltransferase activity abrogated its leukemogenic potential and disease development in human cells and a mouse model. Furthermore, treatment of azacytidine was effective in our CMML mice. The recapitulation of CMML clinical phenotypes and gene expression profile by the HBO1 fusion suggests our new model as a useful platform for elucidating the central downstream mediators underlying diverse CMML-related mutations and testing multiple compounds, providing novel therapeutic potential.


Subject(s)
Histone Acetyltransferases/genetics , Leukemia, Myelomonocytic, Chronic/etiology , Nuclear Pore Complex Proteins/genetics , Oncogene Proteins, Fusion/genetics , Acetylation , Animals , Disease Models, Animal , Disease Progression , Histones/metabolism , Homeodomain Proteins/metabolism , Humans , Leukemia, Myelomonocytic, Chronic/pathology , Mice , Phenotype
3.
Cancer Sci ; 110(1): 194-208, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30343511

ABSTRACT

Multiple myeloma (MM) is an incurable hematological malignancy caused by accumulation of abnormal clonal plasma cells. Despite the recent development of novel therapies, relapse of MM eventually occurs as a result of a remaining population of drug-resistant myeloma stem cells. Side population (SP) cells show cancer stem cell-like characteristics in MM; thus, targeting these cells is a promising strategy to completely cure this malignancy. Herein, we showed that SP cells expressed higher levels of enhancer of zeste homolog (EZH) 1 and EZH2, which encode the catalytic subunits of Polycomb repressive complex 2 (PRC2), than non-SP cells, suggesting that EZH1 as well as EZH2 contributes to the stemness maintenance of the MM cells and that targeting both EZH1/2 is potentially a significant therapeutic approach for eradicating myeloma stem cells. A novel orally bioavailable EZH1/2 dual inhibitor, OR-S1, effectively eradicated SP cells and had a greater antitumor effect than a selective EZH2 inhibitor in vitro and in vivo, including a unique patient-derived xenograft model. Moreover, long-term continuous dosing of OR-S1 completely cured mice bearing orthotopic xenografts. Additionally, PRC2 directly regulated WNT signaling in MM, and overactivation of this signaling induced by dual inhibition of EZH1/2 eradicated myeloma stem cells and negatively affected tumorigenesis, suggesting that repression of WNT signaling by PRC2 plays an important role in stemness maintenance of MM cells. Our results show the role of EZH1/2 in the maintenance of myeloma stem cells and provide a preclinical rationale for therapeutic application of OR-S1, leading to significant advances in the treatment of MM.


Subject(s)
Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Multiple Myeloma/prevention & control , Neoplastic Stem Cells/drug effects , Polycomb Repressive Complex 2/antagonists & inhibitors , Wnt Signaling Pathway/drug effects , Xenograft Model Antitumor Assays , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/genetics , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Multiple Myeloma/genetics , Multiple Myeloma/metabolism , Neoplastic Stem Cells/metabolism , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism , Side-Population Cells/drug effects , Side-Population Cells/metabolism , Wnt Signaling Pathway/genetics
4.
Blood Adv ; 1(18): 1382-1386, 2017 Aug 08.
Article in English | MEDLINE | ID: mdl-29296779

ABSTRACT

RUNX1a, but not RUNX1b, is overexpressed in CD34+ cells from patients with myelodysplastic/myeloproliferative neoplasms.SRSF2P95H mutation induces RUNX1a overexpression and a monocytic phenotype in TF-1 cells.

5.
J Biochem ; 159(1): 17-25, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26590301

ABSTRACT

Recent progress in high-speed sequencing technology has revealed that tumors harbor novel mutations in a variety of genes including those for molecules involved in epigenetics and splicing, some of which were not categorized to previously thought malignancy-related genes. However, despite thorough identification of mutations in solid tumors and hematological malignancies, how these mutations induce cell transformation still remains elusive. In addition, each tumor usually contains multiple mutations or sometimes consists of multiple clones, which makes functional analysis difficult. Fifteen years ago, it was proposed that combination of two types of mutations induce acute leukemia; Class I mutations induce cell growth or inhibit apoptosis while class II mutations block differentiation, co-operating in inducing acute leukemia. This notion has been proven using a variety of mouse models, however most of recently found mutations are not typical class I/II mutations. Although some novel mutations have been found to functionally work as class I or II mutation in leukemogenesis, the classical class I/II theory seems to be too simple to explain the whole story. We here overview the molecular basis of hematological malignancies based on clinical and experimental results, and propose a new working hypothesis for leukemogenesis.


Subject(s)
Carcinogenesis/genetics , Hematologic Neoplasms/genetics , Leukemia, Myeloid, Acute/genetics , Myelodysplastic Syndromes/genetics , Translocation, Genetic , Animals , Cell Proliferation , Cell Transformation, Neoplastic/genetics , Epigenesis, Genetic , Hematopoietic Stem Cells/metabolism , Humans , Mice , Mice, Transgenic , Mutation , Oncogene Proteins, Fusion/genetics , Phenotype
6.
Cancer Res ; 75(10): 2005-16, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25795706

ABSTRACT

IDH1 and IDH2 mutations occur frequently in acute myeloid leukemia (AML) and other cancers. The mutant isocitrate dehydrogenase (IDH) enzymes convert α-ketoglutarate (α-KG) to the oncometabolite 2-hydroxyglutarate (2-HG), which dysregulates a set of α-KG-dependent dioxygenases. To determine whether mutant IDH enzymes are valid targets for cancer therapy, we created a mouse model of AML in which mice were transplanted with nucleophosmin1 (NPM)(+/-) hematopoietic stem/progenitor cells cotransduced with four mutant genes (NPMc, IDH2/R140Q, DNMT3A/R882H, and FLT3/ITD), which often occur simultaneously in human AML patients. Conditional deletion of IDH2/R140Q blocked 2-HG production and maintenance of leukemia stem cells, resulting in survival of the AML mice. IDH2/R140Q was necessary for the engraftment or survival of NPMc(+) cells in vivo. Gene expression analysis indicated that NPMc increased expression of Hoxa9. IDH2/R140Q also increased the level of Meis1 and activated the hypoxia pathway in AML cells. IDH2/R140Q decreased the 5hmC modification and expression of some differentiation-inducing genes (Ebf1 and Spib). Taken together, our results indicated that IDH2 mutation is critical for the development and maintenance of AML stem-like cells, and they provided a preclinical justification for targeting mutant IDH enzymes as a strategy for anticancer therapy.


Subject(s)
Homeodomain Proteins/metabolism , Isocitrate Dehydrogenase/genetics , Leukemia, Myeloid, Acute/genetics , Neoplasm Proteins/metabolism , Nuclear Proteins/genetics , Animals , Cell Hypoxia , Gene Expression Regulation, Leukemic , Humans , Isocitrate Dehydrogenase/metabolism , Leukemia, Myeloid, Acute/metabolism , Mice, Inbred C57BL , Mutation, Missense , Myeloid Ecotropic Viral Integration Site 1 Protein , Neoplasm Transplantation , Nuclear Proteins/metabolism , Nucleophosmin , Up-Regulation
7.
Proc Jpn Acad Ser B Phys Biol Sci ; 90(10): 389-404, 2014.
Article in English | MEDLINE | ID: mdl-25504228

ABSTRACT

Myeloid malignancies consist of acute myeloid leukemia (AML), myelodysplastic syndromes (MDS) and myeloproliferative neoplasm (MPN). The latter two diseases have preleukemic features and frequently evolve to AML. As with solid tumors, multiple mutations are required for leukemogenesis. A decade ago, these gene alterations were subdivided into two categories: class I mutations stimulating cell growth or inhibiting apoptosis; and class II mutations that hamper differentiation of hematopoietic cells. In mouse models, class I mutations such as the Bcr-Abl fusion kinase induce MPN by themselves and some class II mutations such as Runx1 mutations induce MDS. Combinations of class I and class II mutations induce AML in a variety of mouse models. Thus, it was postulated that hematopoietic cells whose differentiation is blocked by class II mutations would autonomously proliferate with class I mutations leading to the development of leukemia. Recent progress in high-speed sequencing has enabled efficient identification of novel mutations in a variety of molecules including epigenetic factors, splicing factors, signaling molecules and proteins in the cohesin complex; most of these are not categorized as either class I or class II mutations. The functional consequences of these mutations are now being extensively investigated. In this article, we will review the molecular basis of hematological malignancies, focusing on mouse models and the interfaces between these models and clinical findings, and revisit the classical class I/II hypothesis.


Subject(s)
Cell Transformation, Neoplastic/genetics , Epigenesis, Genetic , Hematologic Neoplasms/genetics , Leukemia, Myeloid, Acute/genetics , Mutation , Myelodysplastic Syndromes/genetics , Animals , Cell Proliferation/genetics , Cell Transformation, Neoplastic/metabolism , Fusion Proteins, bcr-abl/genetics , Fusion Proteins, bcr-abl/metabolism , Hematologic Neoplasms/metabolism , Humans , Leukemia, Myeloid, Acute/metabolism , Mice , Myelodysplastic Syndromes/metabolism
9.
Blood ; 123(25): 3932-42, 2014 Jun 19.
Article in English | MEDLINE | ID: mdl-24825862

ABSTRACT

High levels of HES1 expression are frequently found in BCR-ABL(+) chronic myelogenous leukemia in blast crisis (CML-BC). In mouse bone marrow transplantation (BMT) models, co-expression of BCR-ABL and Hes1 induces CML-BC-like disease; however, the underlying mechanism remained elusive. Here, based on gene expression analysis, we show that MMP-9 is upregulated by Hes1 in common myeloid progenitors (CMPs). Analysis of promoter activity demonstrated that Hes1 upregulated MMP-9 by activating NF-κB. Analysis of 20 samples from CML-BC patients showed that MMP-9 was highly expressed in three, with two exhibiting high levels of HES1 expression. Interestingly, MMP-9 deficiency impaired the cobblestone area-forming ability of CMPs expressing BCR-ABL and Hes1 that were in conjunction with a stromal cell layer. In addition, CMPs expressing BCR-ABL and Hes1 secreted MMP-9, promoting the release of soluble Kit-ligand (sKitL) from stromal cells, thereby enhancing proliferation of the leukemic cells. In accordance, mice transplanted with CMPs expressing BCR-ABL and Hes1 exhibited high levels of sKitL as well as MMP-9 in the serum. Importantly, MMP-9 deficiency impaired the development of CML-BC-like disease induced by BCR-ABL and Hes1 in mouse BMT models. The present results suggest that Hes1 promotes the development of CML-BC, partly through MMP-9 upregulation in leukemic cells.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Blast Crisis/genetics , Gene Expression Regulation, Leukemic , Homeodomain Proteins/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Matrix Metalloproteinase 9/genetics , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Blast Crisis/metabolism , Bone Marrow Transplantation/methods , Cell Movement/genetics , Cell Proliferation , Flow Cytometry , Fusion Proteins, bcr-abl/genetics , Fusion Proteins, bcr-abl/metabolism , Homeodomain Proteins/metabolism , Humans , Kaplan-Meier Estimate , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Matrix Metalloproteinase 9/metabolism , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Models, Genetic , NF-kappa B/metabolism , Oligonucleotide Array Sequence Analysis , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction , Transcription Factor HES-1 , Up-Regulation
10.
J Clin Invest ; 123(11): 4627-40, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24216483

ABSTRACT

Recurrent mutations in the gene encoding additional sex combs-like 1 (ASXL1) are found in various hematologic malignancies and associated with poor prognosis. In particular, ASXL1 mutations are common in patients with hematologic malignancies associated with myelodysplasia, including myelodysplastic syndromes (MDSs), and chronic myelomonocytic leukemia. Although loss-of-function ASXL1 mutations promote myeloid transformation, a large subset of ASXL1 mutations is thought to result in stable truncation of ASXL1. Here we demonstrate that C-terminal­truncating Asxl1 mutations (ASXL1-MTs) inhibited myeloid differentiation and induced MDS-like disease in mice. ASXL1-MT mice displayed features of human-associated MDS, including multi-lineage myelodysplasia, pancytopenia, and occasional progression to overt leukemia. ASXL1-MT resulted in derepression of homeobox A9 (Hoxa9) and microRNA-125a (miR-125a) expression through inhibition of polycomb repressive complex 2­mediated (PRC2-mediated) methylation of histone H3K27. miR-125a reduced expression of C-type lectin domain family 5, member a (Clec5a), which is involved in myeloid differentiation. In addition, HOXA9 expression was high in MDS patients with ASXL1-MT, while CLEC5A expression was generally low. Thus, ASXL1-MT­induced MDS-like disease in mice is associated with derepression of Hoxa9 and miR-125a and with Clec5a dysregulation. Our data provide evidence for an axis of MDS pathogenesis that implicates both ASXL1 mutations and miR-125a as therapeutic targets in MDS.


Subject(s)
Mutant Proteins/genetics , Mutation , Myelodysplastic Syndromes/genetics , Repressor Proteins/genetics , Animals , Cell Line , Disease Models, Animal , Histones/metabolism , Homeodomain Proteins/genetics , Humans , Lectins, C-Type/genetics , Methylation , Mice , Mice, Inbred C57BL , MicroRNAs/genetics , Myelodysplastic Syndromes/metabolism , Myelodysplastic Syndromes/pathology , Myelopoiesis/genetics , Peptide Fragments/genetics , Receptors, Cell Surface/genetics
11.
Int J Hematol ; 96(5): 638-48, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23097187

ABSTRACT

Activating mutations of c-Kit are frequently found in acute myeloid leukemia (AML) patients harboring t(8;21) chromosomal translocation generating a fusion protein AML1-ETO. Here we show that an active mutant of c-Kit cooperates with AML1-ETO to induce AML in mouse bone marrow transplantation models. Leukemic cells expressing AML1-ETO with c-Kit(D814V) were serially transplantable. Transplantation experiments indicated that lineage(-)c-Kit(+)Sca-1(+) (KSL) leukemic cells, but not lineage(+) leukemic cells, were enriched for leukemia stem cells (LSCs). Comparison of gene expression profiles between KSL leukemic and normal cells delineated that CD200R1 was highly expressed in KSL leukemic cells as compared with KSL normal cells. Upregulation of CD200R1 was verified in lineage(-) leukemic cells, but not in lineage(+) leukemic cells. CD200R1 expression in the lineage(-) leukemic cells was not correlated with the frequency of LSCs, indicating that CD200R1 is not a useful marker for LSCs in these models. Interestingly, CD200R1 was upregulated in KSL cells transduced with AML1-ETO, but not with other leukemogenic mutants, including c-Kit(D814V), AML1(D171N), and AML1(S291fsX300). Consistently, upregulation of CD200R1 in lineage(-) leukemic cells was observed only in the BM of mice suffering from AML1-ETO-positive leukemia. In conclusion, AML1-ETO upregulated CD200R1 in lineage(-) cells, which was characteristic of AML1-ETO-positive leukemia in mice.


Subject(s)
Antigens, Surface/biosynthesis , Core Binding Factor Alpha 2 Subunit/metabolism , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Leukemic , Leukemia/metabolism , Oncogene Proteins, Fusion/metabolism , Proto-Oncogene Proteins/metabolism , Receptors, Cell Surface/biosynthesis , Transcription Factors/metabolism , Up-Regulation , Amino Acid Substitution , Animals , Antigens, Surface/genetics , Cell Line, Tumor , Core Binding Factor Alpha 2 Subunit/genetics , DNA-Binding Proteins/genetics , Leukemia/genetics , Leukemia/pathology , Mice , Mutation, Missense , Oncogene Proteins, Fusion/genetics , Orexin Receptors , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins c-kit/genetics , Proto-Oncogene Proteins c-kit/metabolism , Rats , Receptors, Cell Surface/genetics , Transcription Factors/genetics
12.
Int J Hematol ; 95(2): 167-75, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22189847

ABSTRACT

The Bcr-Abl oncogene causes human Philadelphia chromosome-positive (Ph(+)) leukemias, including B-cell acute lymphoblastic leukemia (B-ALL) and chronic myeloid leukemia (CML) with chronic phase (CML-CP) to blast crisis (CML-BC). Previous studies have demonstrated that Src family kinases are required for the induction of B-ALL, but not for CML, which is induced by Bcr-Abl in mice. In contrast, it has been reported that Fyn is up-regulated in human CML-BC compared with CML-CP, implicating Fyn in the blast crisis transition. Here, we aimed to delineate the exact role of Fyn in the induction/progression of Ph(+) leukemias. We found that Fyn is expressed in mouse hematopoietic cells at varying stages of development, including c-kit(+)Sca-1(+)Lin(-) cells. Notably, Fyn is highly expressed in some of human lymphomas, but not in human Ph(+) leukemias including CML-BC. In mouse bone marrow transplantation models, mice transplanted with wild-type or Fyn-deficient bone marrow cells transduced with Bcr-Abl showed no differences in the development of B-ALL or CML-like diseases. Similarly, Fyn deficiency failed to impact the development of myeloid CML-BC induced by Bcr-Abl and Hes1. Elevated expression of Fyn was not found in mouse samples of Bcr-Abl-mediated CML- and CML-BC-like diseases. Thus, Fyn is not required for the pathogenesis of Bcr-Abl-mediated leukemias.


Subject(s)
Fusion Proteins, bcr-abl/genetics , Gene Expression Regulation, Leukemic/physiology , Hematopoietic Stem Cells/physiology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Proto-Oncogene Proteins c-fyn/genetics , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Bone Marrow Transplantation , Disease Models, Animal , Homeodomain Proteins/genetics , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/physiopathology , Lymphoma, B-Cell/genetics , Lymphoma, B-Cell/physiopathology , Lymphoma, T-Cell/genetics , Lymphoma, T-Cell/physiopathology , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/physiopathology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/physiopathology , Proto-Oncogene Proteins c-fyn/physiology , Transcription Factor HES-1
13.
Proc Natl Acad Sci U S A ; 107(16): 7419-24, 2010 Apr 20.
Article in English | MEDLINE | ID: mdl-20360558

ABSTRACT

The indigenous bacteria create natural cohabitation niches together with mucosal Abs in the gastrointestinal (GI) tract. Here we report that opportunistic bacteria, largely Alcaligenes species, specifically inhabit host Peyer's patches (PPs) and isolated lymphoid follicles, with the associated preferential induction of antigen-specific mucosal IgA Abs in the GI tract. Alcaligenes were identified as the dominant bacteria on the interior of PPs from naïve, specific-pathogen-free but not from germ-free mice. Oral transfer of intratissue uncultured Alcaligenes into germ-free mice resulted in the presence of Alcaligenes inside the PPs of recipients. This result was further supported by the induction of antigen-specific Ab-producing cells in the mucosal (e.g., PPs) but not systemic compartment (e.g., spleen). The preferential presence of Alcaligenes inside PPs and the associated induction of intestinal secretory IgA Abs were also observed in both monkeys and humans. Localized mucosal Ab-mediated symbiotic immune responses were supported by Alcaligenes-stimulated CD11c(+) dendritic cells (DCs) producing the Ab-enhancing cytokines TGF-beta, B-cell-activating factor belonging to the TNF family, and IL-6 in PPs. These CD11c(+) DCs did not migrate beyond the draining mesenteric lymph nodes. In the absence of antigen-specific mucosal Abs, the presence of Alcaligenes in PPs was greatly diminished. Thus, indigenous opportunistic bacteria uniquely inhabit PPs, leading to PP-DCs-initiated, local antigen-specific Ab production; this may involve the creation of an optimal symbiotic environment on the interior of the PPs.


Subject(s)
Antibodies/chemistry , Bacteria/metabolism , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Peyer's Patches/immunology , Animals , Humans , In Situ Hybridization, Fluorescence , Lymph Nodes/immunology , Lymphoid Tissue/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred DBA , Molecular Sequence Data , RNA, Ribosomal, 16S/metabolism , Spleen/immunology
14.
J Immunol ; 180(8): 5335-43, 2008 Apr 15.
Article in English | MEDLINE | ID: mdl-18390715

ABSTRACT

It is well established that Peyer's patches (PPs) are sites for the differentiation of IgA plasma cell precursors, but molecular and cellular mechanisms in their trafficking remain to be elucidated. In this study, we show that alterations in type 1 sphingosine 1-phosphate (S1P) receptor expression during B cell differentiation in the PPs control the emigration of IgA plasma cell precursors. Type 1 S1P receptor expression decreased during the differentiation of IgM(+)B220(+) B cells to IgA(+)B220(+) B cells, but recovered on IgA(+)B220(-) plasmablasts for their emigration from the PPs. Thus, IgA(+)B220(-) plasmablasts migrated in response to S1P in vitro. Additionally, IgA(+) plasmablasts selectively accumulated in lymphatic regions of PPs when S1P-mediated signaling was disrupted by FTY720 treatment. This accumulation of IgA(+) plasmablasts in the PPs led to their reduction in the intestinal lamina propria and simultaneous impairment of Ag-specific intestinal IgA production against orally administered Ag. These findings suggest that S1P regulates the retention and emigration of PP B cells and plays key roles in the induction of intestinal IgA production.


Subject(s)
B-Lymphocytes/immunology , Immunoglobulin A/metabolism , Intestinal Mucosa/metabolism , Lysophospholipids/metabolism , Peyer's Patches/immunology , Sphingosine/analogs & derivatives , Animals , B-Lymphocytes/cytology , B-Lymphocytes/drug effects , B-Lymphocytes/metabolism , Female , Fingolimod Hydrochloride , Immunoglobulin A/immunology , Immunosuppressive Agents/administration & dosage , Immunosuppressive Agents/pharmacology , Intestines/drug effects , Intestines/immunology , Lysophospholipids/immunology , Mice , Mice, Inbred BALB C , Ovalbumin/immunology , Peyer's Patches/cytology , Peyer's Patches/drug effects , Plasma Cells/cytology , Plasma Cells/drug effects , Plasma Cells/immunology , Propylene Glycols/administration & dosage , Propylene Glycols/pharmacology , Sphingosine/administration & dosage , Sphingosine/immunology , Sphingosine/metabolism , Sphingosine/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...