Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Mov Ecol ; 11(1): 57, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37710345

ABSTRACT

Fisheries managers stock triploid (i.e., infertile, artificially produced) rainbow trout Oncorhynchus mykiss in North American lakes to support sport fisheries while minimizing the risk of genetic introgression between hatchery and wild trout. In Washington State, the Washington Department of Fish and Wildlife (WDFW) allocates approximately US $3 million annually to stock hatchery-origin rainbow trout in > 600 lakes, yet only about 10% of them are triploids. Many lakes in Washington State drain into waters that support wild anadromous steelhead O. mykiss that are listed as threatened under the U.S. Endangered Species Act. As a result, there is a strong interest in understanding the costs and benefits associated with stocking sterile, triploid rainbow trout as an alternative to traditional diploids. The objectives of this study were to compare triploid and diploid rainbow trout in terms of: (1) contribution to the sport fishery catch, (2) fine-scale movements within the study lakes, (3) rate of emigration from the lake, and (4) natural mortality. Our results demonstrated that triploid and diploid trout had similar day-night distribution patterns, but triploid trout exhibited a lower emigration rate from the lake and lower catch rates in some lakes. Overall, triploid rainbow trout represent a viable alternative to stocking of diploids, especially in lakes draining to rivers, because they are sterile, have comparable home ranges, and less often migrate.

2.
Bull Environ Contam Toxicol ; 93(1): 7-12, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24852611

ABSTRACT

Bivalves are used as sentinel species to detect chemical contaminants in the marine environment, but biological effects on indigenous populations that result from chemical exposure are largely unknown. We assessed age-weight, length-weight relationships, age structure, and reproductive status (i.e. fecundity, egg size) of the blue mussel Mytilus edulis complex from six sites in central Puget Sound, Washington, and one site in the relatively pristine area of northern Puget Sound. Results of this study suggest that mussels from urban areas of Puget Sound exhibit a lower growth rate, altered population age-structure, and potential reproductive impairment as a result of exposure to chemical contaminants. These findings support the use of mussels as sentinel species to assess the biological effects of contaminants on invertebrate populations.


Subject(s)
Environmental Monitoring , Hydrocarbons, Chlorinated/toxicity , Mytilus edulis/drug effects , Polycyclic Aromatic Hydrocarbons/toxicity , Water Pollutants, Chemical/toxicity , Age Factors , Animals , Body Size/drug effects , Mytilus edulis/growth & development , Mytilus edulis/physiology , Reproduction/drug effects , Rivers/chemistry , Washington
3.
Sci Total Environ ; 374(2-3): 342-66, 2007 Mar 15.
Article in English | MEDLINE | ID: mdl-17306864

ABSTRACT

Although chemical contaminants are recognized as a potential factor contributing to the salmon declines in the Pacific Northwest, United States, information on contaminant concentrations in threatened and endangered salmon from the Columbia Estuary is limited. In this study we monitored exposure to several persistent organic pollutants [polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethanes (DDTs) and other organochlorine pesticides] in outmigrant juvenile fall chinook salmon (Oncorhynchus tschawytscha) in the Lower Columbia River, and evaluated the potential for adverse effects on salmon and the estuarine food web. Contaminants were measured in whole bodies and stomach contents of subyearling to yearling chinook collected in 2001 and 2002 from sites near the confluence of the Columbia and Willamette Rivers, Longview, and within the lower Estuary. The contaminants detected at highest concentrations in salmon whole bodies were PCBs and DDTs. Average concentrations of PCBs in salmon from the sampling sites ranged from 1300 to 14,000 ng/g lipid, in some cases exceeding the recently estimated threshold for adverse health effects in juvenile salmonids of 2400 ng/g lipid. Average DDT concentrations ranged from 1800 to 27,000 ng/g lipid. These levels are among the highest measured in juvenile salmon from Pacific Northwest estuaries to date. Concentrations of PCBs and DDTs in salmon whole bodies showed no clear spatial gradient from the Willamette/Columbia Confluence to the mouth of the Columbia, but tended to be higher in larger fish and older fish, suggesting a correlation with estuarine residence time. PCBs, DDTs, and PAHs were all found in salmon stomach contents, indicating that prey is a source of exposure. Hatchery feed may have contributed to contaminant body burdens in those fish that were of hatchery origin. Contaminant body burdens in salmon were poorly correlated with contaminant concentrations previously measured in local bed sediments, suggesting that pelagic as well as benthic sources are important in determining salmon exposure.


Subject(s)
Hydrocarbons, Chlorinated/analysis , Pesticides/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Salmon/metabolism , Water Pollutants, Chemical/analysis , Animals , Environmental Monitoring , Gastrointestinal Contents/chemistry , Hydrocarbons, Chlorinated/metabolism , Pesticides/metabolism , Polycyclic Aromatic Hydrocarbons/metabolism , Rivers , United States , Water Pollutants, Chemical/metabolism
4.
Environ Monit Assess ; 124(1-3): 167-94, 2007 Jan.
Article in English | MEDLINE | ID: mdl-16957861

ABSTRACT

To better understand the dynamics of contaminant uptake in outmigrant juvenile salmon in the Pacific Northwest, concentrations of polychlorinated biphenyls (PCBs), DDTs, polycylic aromatic hydrocarbons (PAHs) and organochlorine pesticides were measured in tissues and prey of juvenile chinook and coho salmon from several estuaries and hatcheries in the US Pacific Northwest. PCBs, DDTs, and PAHs were found in tissues (whole bodies or bile) and stomach contents of chinook and coho salmon sampled from all estuaries, as well as in chinook salmon from hatcheries. Organochlorine pesticides were detected less frequently. Of the two species sampled, chinook salmon had the highest whole body contaminant concentrations, typically 2--5 times higher than coho salmon from the same sites. In comparison to estuarine chinook salmon, body burdens of PCBs and DDTs in hatchery chinook were relatively high, in part because of the high lipid content of the hatchery fish. Concentrations of PCBs were highest in chinook salmon from the Duwamish Estuary, the Columbia River and Yaquina Bay, exceeding the NOAA Fisheries' estimated threshold for adverse health effects of 2400 ng/g lipid. Concentrations of DDTs were especially high in juvenile chinook salmon from the Columbia River and Nisqually Estuary; concentrations of PAH metabolites in bile were highest in chinook salmon from the Duwamish Estuary and Grays Harbor. Juvenile chinook salmon are likely absorbing some contaminants during estuarine residence through their prey, as PCBs, PAHs, and DDTs were consistently present in stomach contents, at concentrations significantly correlated with contaminant body burdens in fish from the same sites.


Subject(s)
Fisheries , Oncorhynchus kisutch/metabolism , Salmon/metabolism , Water Pollutants/analysis , Animals , Bile/metabolism , DDT/analysis , DDT/metabolism , Gastric Mucosa/metabolism , Hydrocarbons, Chlorinated/analysis , Hydrocarbons, Chlorinated/metabolism , Lipids/analysis , Pesticides/analysis , Pesticides/metabolism , Polychlorinated Biphenyls/analysis , Polychlorinated Biphenyls/metabolism , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/metabolism , Salmon/classification , United States , Water Pollutants/metabolism
5.
J Aquat Anim Health ; 18(4): 223-31, 2006 Dec.
Article in English | MEDLINE | ID: mdl-26599158

ABSTRACT

Various methods have been developed to mitigate the effects of dams on juvenile Pacific salmon Oncorhynchus spp. migrating to the Pacific Ocean through the Columbia River basin. In this study, we examined the health of hatchery Snake River spring and summer Chinook salmon relative to two mitigating strategies: dam bypass and transportation (e.g., barging). The health of out-migrants was assessed in terms of the difference in the incidence of mortality among fish, categorically grouped into no-bypass, bypass, and transportation life histories, in response to challenge with the marine pathogen Listonella anguillarum during seawater holding. These three life histories were defined as follows: (1) fish that were not detected at any of the juvenile bypass systems above Bonneville Dam were classified as having a no-bypass life history; (2) fish that were detected at one or more juvenile bypass systems above Bonneville Dam were classified as having a bypass life history; and (3) fish that were barged were classified as having the transportation life history. Barged fish were found to be less susceptible to L. anguillarum than in-river fish-whether bypassed or not-which suggests that transportation may help mitigate the adverse health effects of the hydropower system of the Columbia River basin on Snake River spring-summer Chinook salmon. The findings of this study are not necessarily transferable to other out-migrant stocks in the Columbia River basin, given that only one evolutionarily significant unit, that is, Snake River spring-summer Chinook salmon, was used in this study.

6.
Sci Total Environ ; 339(1-3): 189-205, 2005 Mar 01.
Article in English | MEDLINE | ID: mdl-15740769

ABSTRACT

Concentrations of three non-essential elements (cadmium (Cd), mercury (Hg), and lead (Pb)) were determined in sediment and fish from several locations in Alaska (AK) and California (CA) and used to examine differences in bioaccumulation within and between geographic locations. We analyzed tissue (liver, muscle, gill, and stomach contents) from white croaker (Genyonemus lineatus) and English sole (Pleuronectes vetulus) in California and flathead sole (Hippoglossoides elassodon) in Alaska, in addition to several species of invertebrates (mercury only). As found in previous work on arsenic (As) [Meador et al., 2004], Cd in fish liver exhibited a negative correlation with sediment concentrations. No such correlations were found for Hg and Pb when fish liver and sediment were compared; however, these metals did exhibit a positive relationship between liver and organic carbon normalized sediment concentrations, but only for the CA sites. Sediment concentrations of Hg at the AK sites were lower than those for the CA sites; however, AK invertebrates generally bioaccumulated more Hg than CA invertebrates. Conversely, Hg bioaccumulation was higher in CA fish. Even though ratios of total metal/acid volatile sulfides (AVS) in sediment were one to two orders of magnitude higher for the AK sites, bioaccumulation of these elements was much higher in fish from the CA sites. Bioaccumulation factors ([liver]/[sediment]) (BAFs) were highest at relatively clean sites (Bodega Bay and Monterey), indicating that elements were more bioavailable at these sites than from more contaminated locations. The observation of high BAFs for As in fish from Alaska and low BAFs for the California fish, but reversed for Cd, Hg, and Pb in this study, implies that differences in fish species are less important than the unique geochemical features at each site that control bioavailability and bioaccumulation and the potential sources for each element. Additionally, these data were also used to examine the metal depletion hypothesis, which describes the inverse relationship between elements and organic contaminants documented in some monitoring studies. Our results suggest that the enhanced bioavailability of the metals at some uncontaminated sites is the main determinant for the inverse correlation between metal and organic contaminants in tissue.


Subject(s)
Cadmium/metabolism , Fishes/metabolism , Geologic Sediments/chemistry , Lead/metabolism , Mercury/metabolism , Water Pollutants, Chemical/metabolism , Acids/analysis , Acids/metabolism , Alaska , Animals , Cadmium/analysis , California , Environmental Monitoring , Lead/analysis , Liver/metabolism , Mercury/analysis , Organic Chemicals/analysis , Organic Chemicals/metabolism , Sulfides/analysis , Sulfides/metabolism , Tissue Distribution , Volatilization , Water Pollutants, Chemical/analysis
7.
Arch Environ Contam Toxicol ; 47(2): 223-33, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15386148

ABSTRACT

Past studies determined that concentrations of arsenic in the liver of flathead sole from Alaska were generally higher than those found in fish from other locations sampled along the west coast of the United States (Meador et al. 1994). A study was conducted to examine arsenic concentrations and patterns of bioaccumulation in fish and potential prey species from two geographic locations. Flathead sole were collected from four sites in the Gulf of Alaska and white croaker and English sole were collected from five sites in California. Potential prey species from each site were also examined and found to contain high concentrations of arsenic. In California, the sites with the lowest sediment concentrations of arsenic, total organic carbon, and acid-volatile sulfides (AVS) contained invertebrates with the highest tissue concentrations. Regression analysis determined that arsenic in polychaetes was highly correlated to sediment concentrations of arsenic normalized to AVS but was higher overall for the California samples. Even though invertebrates from several of the California sites exhibited much higher concentrations of arsenic than invertebrates from the Alaska sites, liver and muscle tissue from flathead sole collected in Alaska usually exhibited higher concentrations than fish from the California sites. When concentrations of arsenic in fish liver were plotted against concentrations of arsenic in sediment normalized to AVS levels, a very high correlation was obtained for all sites. This suggests that AVS, or some factor correlated with AVS, may have been responsible for controlling arsenic bioaccumulation in these fish species through dietary uptake and exposure to arsenic in water. Based on the available data, it appears that dietary uptake may be related to fish tissue concentrations, but uptake of aqueous arsenic may be responsible for the higher tissue concentrations in fish from Alaska.


Subject(s)
Arsenic/pharmacokinetics , Fishes , Food Chain , Invertebrates , Water Pollutants/pharmacokinetics , Alaska , Animals , California , Diet , Environmental Monitoring , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...