Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunol ; 182(7): 4255-66, 2009 Apr 01.
Article in English | MEDLINE | ID: mdl-19299724

ABSTRACT

IL-7 is critical for B cell production in adult mice; however, its role in human B lymphopoiesis is controversial. One challenge was the inability to differentiate human cord blood (CB) or adult bone marrow (BM) hematopoietic stem cells (HSCs) without murine stroma. Here, we examine the role of IL-7 in human B cell development using a novel, human-only model based on coculturing human HSCs on primary human BM stroma. In this model, IL-7 increases human B cell production by >60-fold from both CB and adult BM HSCs. IL-7-induced increases are dose-dependent and specific to CD19(+) cells. STAT5 phosphorylation and expression of the Ki-67 proliferation Ag indicate that IL-7 acts directly on CD19(+) cells to increase proliferation at the CD34(+) and CD34(-) pro-B cell stages. Without IL-7, HSCs in CB, but not BM, give rise to a small but consistent population of CD19(lo) B lineage cells that express EBF (early B cell factor) and PAX-5 and respond to subsequent IL-7 stimulation. Flt3 ligand, but not thymic stromal-derived lymhopoietin (TSLP), was required for the IL-7-independent production of human B lineage cells. As compared with CB, adult BM shows a reduction of in vitro generative capacity that is progressively more profound in developmentally sequential populations, resulting in an approximately 50-fold reduction in IL-7-dependent B lineage generative capacity. These data provide evidence that IL-7 is essential for human B cell production from adult BM and that IL-7-induced expansion of the pro-B compartment is increasingly critical for human B cell production during the progression of ontogeny.


Subject(s)
B-Lymphocytes/cytology , B-Lymphocytes/immunology , Fetal Blood/cytology , Hematopoietic Stem Cells/immunology , Interleukin-7/immunology , Lymphopoiesis/immunology , Adult , Animals , Bone Marrow/immunology , Cell Differentiation/immunology , Cell Line , Cell Lineage/immunology , Coculture Techniques/methods , Enzyme-Linked Immunosorbent Assay , Fetal Blood/immunology , Flow Cytometry , Humans , Interleukin-7/metabolism , Mice , Reverse Transcriptase Polymerase Chain Reaction , Stromal Cells/cytology
2.
J Virol ; 83(1): 210-27, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18842714

ABSTRACT

High-risk strains of human papillomavirus (HPV) such as HPV type 16 (HPV16) and HPV18 are causative agents of most human cervical carcinomas. E6, one of the oncogenes encoded by HPV16, possesses a number of biological and transforming functions. We have previously shown that the binding of E6 to host apoptotic proteins such as tumor necrosis factor (TNF) R1, the adaptor protein FADD, and procaspase 8 results in a significant modification of the normal flow of apoptotic events. For example, E6 can bind to and accelerate the degradation of FADD. In addition, full-length E6 binds to the TNF R1 death domain and can also bind to and accelerate the degradation of procaspase 8. In contrast, the binding of small splice isoforms known as E6* results in the stabilization of procaspase 8. In this report, we propose a model for the ability of HPV16 E6 to both sensitize and protect cells from TNF as well as to protect cells from Fas. We demonstrate that both the level of E6 expression and the ratio between full-length E6 and E6* are important factors in the modification of the host extrinsic apoptotic pathways and show that at high levels of E6 expression, the further sensitization of U2OS, NOK, and Ca Ski cells to TNF-mediated apoptosis is most likely due to the formation of a pseudo-death-inducing signaling complex structure that includes complexes of E6 proteins.


Subject(s)
Apoptosis , Human papillomavirus 16/physiology , Oncogene Proteins, Viral/metabolism , Repressor Proteins/metabolism , Cell Line , Humans , Protein Binding , Protein Isoforms/metabolism , Tumor Necrosis Factor-alpha/immunology , fas Receptor/immunology
3.
Mol Ther ; 15(1): 76-85, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17164778

ABSTRACT

Gene therapy for human immunodeficiency virus (HIV)-1 may be performed by introducing into hematopoietic stem cells genes that inhibit replication of HIV-1 using lentiviral vectors. However, production of lentiviral vectors derived from HIV-1 may be inhibited by the gene being carried to inhibit HIV-1 and these vectors could be mobilized by wild-type HIV-1 infecting transduced cells. This study investigates these problems for the delivery of a dominant-negative rev gene humanized revM10 (huM10) by a lentiviral vector. Although most packaging plasmids suffered inhibition of expression of HIV-1 virion proteins by vectors expressing huM10, the packaging plasmids that expressed the highest levels of HIV-1 virion proteins produced vectors at titers that would be sufficient for clinical applications. The vectors carrying huM10 were used to transduce primary human CD34(+) hematopoietic progenitor cells and yielded high-level transduction without toxicity and conferred potent inhibition of HIV-1. The use of lentiviral vectors with deletion of the enhancers and promoter from the LTR (self-inactivating (SIN) vectors) decreased the frequency of vector mobilization by wild-type HIV-1; SIN vectors carrying huM10 were not mobilized detectably. These studies indicate that lentiviral vectors can be made effective for use in gene therapy for HIV-1.


Subject(s)
Antigens, CD34/metabolism , Gene Products, rev/genetics , Gene Products, rev/metabolism , HIV-1/physiology , Hematopoietic Stem Cells/metabolism , Lentivirus/genetics , Virus Replication , Cell Line , Genetic Vectors/genetics , Humans , Plasmids/genetics , Transgenes/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...