Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Biol ; 222(12)2023 12 04.
Article in English | MEDLINE | ID: mdl-37917025

ABSTRACT

Autophagy is a lysosomal/vacuolar delivery system that degrades cytoplasmic material. During autophagy, autophagosomes deliver cellular components to the vacuole, resulting in the release of a cargo-containing autophagic body (AB) into the vacuole. AB membranes must be disrupted for degradation of cargo to occur. The lipase Atg15 and vacuolar proteases Pep4 and Prb1 are known to be necessary for this disruption and cargo degradation, but the mechanistic underpinnings remain unclear. In this study, we establish a system to detect lipase activity in the vacuole and show that Atg15 is the sole vacuolar phospholipase. Pep4 and Prb1 are required for the activation of Atg15 lipase function, which occurs following delivery of Atg15 to the vacuole by the MVB pathway. In vitro experiments reveal that Atg15 is a phospholipase B of broad substrate specificity that is likely implicated in the disruption of a range of membranes. Further, we use isolated ABs to demonstrate that Atg15 alone is able to disrupt AB membranes.


Subject(s)
Autophagosomes , Autophagy-Related Proteins , Autophagy , Phospholipases , Vacuoles , Lipase , Cell Membrane
2.
J Biol Chem ; 298(12): 102641, 2022 12.
Article in English | MEDLINE | ID: mdl-36306824

ABSTRACT

Autophagy is a major cellular degradation pathway that is highly conserved among eukaryotes. The identification of cargos captured by autophagosomes is critical to our understanding of the physiological significance of autophagy in cells, but these studies can be challenging because autophagosomes disintegrate easily. In the yeast Saccharomyces cerevisiae, cells deficient in the vacuolar lipase Atg15 accumulate autophagic bodies (ABs) within the vacuole following the induction of autophagy. As ABs contain cytosolic components including proteins, RNAs, and lipids, their purification allows the identification of material targeted by autophagy for degradation. In this study, we demonstrate a method to purify intact ABs using isolated vacuoles from atg15Δ cells. Taking advantage of the size discrepancy between the vacuoles and ABs, the vacuolar membrane was disrupted by filtration to release ABs. Filtered vacuolar lysates were subjected to density gradient centrifugation to obtain AB fractions. Purified ABs retain membrane integrity and contain autophagic cargos. This technique offers a valuable tool for the identification of the cargos of autophagy, examination of autophagic cargo selectivity, and biochemical characterization of autophagosome membranes.


Subject(s)
Autophagosomes , Saccharomyces cerevisiae , Autophagosomes/metabolism , Autophagy , Phagosomes/metabolism , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Vacuoles/enzymology , Vacuoles/metabolism
3.
J Cell Biol ; 216(10): 3263-3274, 2017 10 02.
Article in English | MEDLINE | ID: mdl-28838958

ABSTRACT

Microautophagy refers to a mode of autophagy in which the lysosomal or vacuolar membrane invaginates and directly engulfs target components. The molecular machinery of membrane dynamics driving microautophagy is still elusive. Using immunochemical monitoring of yeast vacuolar transmembrane proteins, Vph1 and Pho8, fused to fluorescent proteins, we obtained evidence showing an induction of microautophagy after a diauxic shift in the yeast Saccharomyces cerevisiae Components of the endosomal sorting complex required for transport machinery were found to be required for this process, and the gateway protein of the machinery, Vps27, was observed to change its localization onto the vacuolar membrane after a diauxic shift. We revealed the functional importance of Vps27's interaction with clathrin in this microautophagy that also contributed to uptake of lipid droplets into the vacuole. This study sheds light on the molecular mechanism of microautophagy, which does not require the core Atg proteins.


Subject(s)
Autophagy/physiology , Clathrin/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Saccharomyces cerevisiae/metabolism , Alkaline Phosphatase/genetics , Alkaline Phosphatase/metabolism , Clathrin/genetics , Endosomal Sorting Complexes Required for Transport/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...