Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Foods ; 12(21)2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37959041

ABSTRACT

The importance of cereals and pulses in the diet is widely recognized, and consumers are seeking for ways to balance their diet with plant-based options. However, the presence of antinutritional factors reduces their nutritional value by decreasing the bioavailability of proteins and minerals. This study's aim was to select microbes and fermentation conditions to affect the nutritional value, taste, and safety of products. Single lactic acid bacteria (LAB) strains that reduce the levels of antinutrients in faba bean and pea were utilized in the selection of microbes for two starter mixtures. They were studied in fermentations of a faba bean-oat mixture at two temperatures for 24, 48, and 72 h. The levels of antinutrients, including galacto-oligosaccharides and pyrimidine glycosides (vicine and convicine), were determined. Furthermore, a sensory evaluation of the fermented product was conducted. Fermentations with selected single strains and microbial mixtures showed a significant reduction in the content of antinutrients, and vicine and convicine decreased by up to 99.7% and 96.1%, respectively. Similarly, the oligosaccharides were almost completely degraded. Selected LAB mixtures were also shown to affect the product's sensory characteristics. Microbial consortia were shown to perform effectively in the fermentation of protein-rich materials, resulting in products with improved nutritional value and organoleptic properties.

2.
Bioresour Technol ; 364: 128039, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36182013

ABSTRACT

To enable the utilization of seasonal biomasses in e.g., farm-scale biogas plants, the process should be flexible and ensure stable gas production. However, information about microbial community dynamics in long-term co-digestion with versatile co-feedstocks is lacking. This study investigated the effects of co-feedstock changes on the performance and evolution of microbial consortia during 428-day anaerobic digestion of cow slurry. Co-feedstocks consisted of hydrocarbon-, protein- and lipid-rich materials. A high throughput 16S ribosomal RNA gene sequencing was used to analyze the taxonomic profile of microbial communities. Due to the low loading rate, the changes were subtle in bacteria, but a shift on archaeal genera in response to different and changing feedstock compositions was observed. Despite drastic changes in co-feedstock composition, stable and flexible anaerobic digestion with relatively constant core microbiome can be achieved with cautious operation of the process.


Subject(s)
Bioreactors , Microbiota , Anaerobiosis , Bioreactors/microbiology , Microbiota/genetics , Bacteria/genetics , Archaea/genetics , Biofuels , RNA, Ribosomal, 16S/genetics , Methane
3.
Adv Food Nutr Res ; 98: 125-169, 2021.
Article in English | MEDLINE | ID: mdl-34507641

ABSTRACT

Consumers worldwide are increasingly interested in the authenticity and naturalness of products. At the same time, the food, agricultural and forest industries generate large quantities of sidestreams that are not effectively utilized. However, these raw materials are rich and inexpensive sources of bioactive compounds such as polyphenols. The exploitation of these raw materials increases income for producers and processors, while reducing transportation and waste management costs. Many Northern sidestreams and other underutilized raw materials are good sources of polyphenols. These include berry, apple, vegetable, softwood, and rapeseed sidestreams, as well as underutilized algae species. Berry sidestreams are especially good sources of various phenolic compounds. This chapter presents the properties of these raw materials, providing an overview of the techniques for refining these materials into functional polyphenol-rich ingredients. The focus is on economically and environmentally sound technologies suitable for the pre-treatment of the raw materials, the modification and recovery of the polyphenols, as well as the formulation and stabilization of the ingredients. For example, sprouting, fermentation, and enzyme technologies, as well as various traditional and novel extraction methods are discussed. Regarding the extraction technologies, this chapter focuses on safe and green technologies that do not use organic solvents. In addition, formulation and stabilization that aim to protect isolated polyphenols during storage and extend shelflife are reviewed. The formulated polyphenol-rich ingredients produced from underutilized renewable resources could be used as sustainable, active ingredients--for example, in food and nutraceutical industries.


Subject(s)
Fruit , Polyphenols , Dietary Supplements , Fruit/chemistry , Phenols , Plant Extracts , Polyphenols/analysis
4.
Food Chem ; 346: 128852, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33476950

ABSTRACT

Lupine (Lupinus sp.) is a valuable source of plant proteins. There is little knowledge on the impact of food processing on composition and sensory properties of lupine products. In this research, we investigated the impact of fermentation with five starters of lactic acid bacteria on the sensory quality and flavor-active compounds in dairy analogues prepared from sweet lupine (Lupinus angustifolius L.). The sensory qualities of unfermented and fermented products were studied with generic descriptive analysis and affective tests. Acids and sugars were analyzed with GC-FID and volatiles with HS-SPME-GC-MS and GC-O. Fermentation increased sourness and 'vinegar' odor and reduced the 'beany' odor and flavor as well as the unpleasantness of flavor. Formation of volatiles during the fermentation was dependent on the starters. However, all fermentations increased the contents of lactic, acetic, and hexanoic acids, while reducing the contents of hexanal, described as 'grassy' in the unfermented lupine sample.


Subject(s)
Lactic Acid/metabolism , Lupinus/metabolism , Fermentation , Flavoring Agents/analysis , Food Handling , Lupinus/embryology , Odorants/analysis , Plant Proteins/metabolism , Seeds/chemistry
5.
Microorganisms ; 8(4)2020 Apr 17.
Article in English | MEDLINE | ID: mdl-32316448

ABSTRACT

Volatile fatty acids (VFAs) are intermediates in the methane formation pathway of anaerobic digestion and can be produced through the fermentation of organic wastes. VFAs have become an anticipated resource- and cost-effective way to replace fossil resources with higher added value and more versatile fuels and chemicals. However, there are still challenges in the production of targeted compounds from diverse and complex biomasses, such as urban biowastes. In this study, the aim was to modulate the microbial communities through inoculum treatment to enhance the production of green chemicals. Thermal and freeze-thaw treatments were applied to the anaerobic digester inoculum to inhibit the growth of methanogens and to enhance the performance of acidogenic and acetogenic bacteria. VFA fermentation after different inoculum treatments was studied in batch scale using urban biowaste as the substrate and the process performance was assessed with chemical and microbial analyses. Inoculum treatments, especially thermal treatment, were shown to increase VFA yields, which were also correlating with the dynamics of the microbial communities and retention times of the test. There was a strong correlation between VFA production and the relative abundances of the microbial orders Clostridiales (families Ruminococcaceae, Lachnospiraceae and Clostridiaceae), and Lactobacillales. A syntrophic relationship of these taxa with members of the Methanobacteriales order was also presumed.

6.
PLoS One ; 12(7): e0180260, 2017.
Article in English | MEDLINE | ID: mdl-28704445

ABSTRACT

The ruminal microbiome, comprising large numbers of bacteria, ciliate protozoa, archaea and fungi, responds to diet and dietary additives in a complex way. The aim of this study was to investigate the benefits of increasing the depth of the community analysis in describing and explaining responses to dietary changes. Quantitative PCR, ssu rRNA amplicon based taxa composition, diversity and co-occurrence network analyses were applied to ruminal digesta samples obtained from four multiparous Nordic Red dairy cows fitted with rumen cannulae. The cows received diets with forage:concentrate ratio either 35:65 (diet H) or 65:35 (L), supplemented or not with sunflower oil (SO) (0 or 50 g/kg diet dry matter), supplied in a 4 × 4 Latin square design with a 2 × 2 factorial arrangement of treatments and four 35-day periods. Digesta samples were collected on days 22 and 24 and combined. QPCR provided a broad picture in which a large fall in the abundance of fungi was seen with SO in the H but not the L diet. Amplicon sequencing showed higher community diversity indices in L as compared to H diets and revealed diet specific taxa abundance changes, highlighting large differences in protozoal and fungal composition. Methanobrevibacter ruminantium and Mbb. gottschalkii dominated archaeal communities, and their abundance correlated negatively with each other. Co-occurrence network analysis provided evidence that no microbial domain played a more central role in network formation, that some minor-abundance taxa were at nodes of highest centrality, and that microbial interactions were diet specific. Networks added new dimensions to our understanding of the diet effect on rumen microbial community interactions.


Subject(s)
Archaea/classification , Bacteria/classification , Ciliophora/classification , Diet/veterinary , Fungi/classification , Rumen/microbiology , Animal Nutritional Physiological Phenomena , Animals , Archaea/genetics , Archaea/isolation & purification , Bacteria/genetics , Bacteria/isolation & purification , Biodiversity , Cattle , Ciliophora/genetics , Ciliophora/isolation & purification , Female , Fungi/genetics , Fungi/isolation & purification , Genes, rRNA , Microbiota , Sequence Analysis, DNA/methods
7.
Anaerobe ; 29: 3-9, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24791674

ABSTRACT

This study describes the microbial community richness and dynamics of two semi-continuously stirred biogas reactors during a time-course study of 120 days. The reactors were fed with untreated and autoclaved (160 °C, 6.2 bar) food waste. The microbial community was analysed using a bacteria- and archaea-targeting 16S rRNA gene-based Terminal-Restriction Fragment Length Polymorphism (T-RFLP) approach. Compared with the archaeal community, the structures and functions of the bacterial community were found to be more complex and diverse. With the principal coordinates analysis it was possible to separate both microbial communities with 75 and 50% difference for bacteria and archaea, respectively, in the two reactors fed with the same waste but with different pretreatment. Despite the use of the same feeding material, anaerobic reactors showed a distinct community profile which could explain the differences in methane yield (2-17%). The community composition was highly dynamic for bacteria and archaea during the entire studied period. This study illustrates that microbial communities are dependent on feeding material and that correlations among specific bacterial and archaeal T-RFs can be established.


Subject(s)
Archaea/genetics , Bacteria/genetics , Methane/biosynthesis , Microbial Consortia/genetics , RNA, Ribosomal, 16S/genetics , Archaea/metabolism , Bacteria/metabolism , Biofuels , Bioreactors , Food , Genetic Variation , Hot Temperature , Polymorphism, Restriction Fragment Length , Pressure , Principal Component Analysis , Waste Products
8.
J Food Prot ; 75(3): 523-32, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22410227

ABSTRACT

This study characterized the bacteria causing decay of carrots during storage and marketing. Spoilage strains were identified by 16S-amplified rDNA restriction analysis and intergenic transcribed spacer-PCR-restriction fragment length polymorphism (ITS-PCR-RFLP). Genotypic fingerprinting by RFLP-pulsed-field gel electrophoresis was used to assess the genetic diversity of the isolates. A total of 252 Pseudomonas isolates from carrots were identified and classified into eight separate groups. Most strains belonged to group A (Pseudomonas fluorescens, Pseudomonas marginalis, and Pseudomonas veronii) and group B (Pseudomonas putida). The strains identified as Pectobacterium carotovorum subsp. carotovorum, Pectobacterium atrosepticum, Dickeya chrysanthemi, and Erwinia rhapontici were distinguished by ITS-PCR-RFLP. All isolates belonging to the genera Pectobacterium and Erwinia were responsible for carrot spoilage. This work has led to the development of new strategies for the identification and genotyping of vegetable-spoiling strains of Pseudomonas, Pectobacterium, and Erwinia. This is also the first report describing the occurrence of carrot-spoiling E. rhapontici. Early recognition of spoilage bacteria in vegetables is important for the implementation of effective handling strategies. Pectolytic bacteria may cause considerable financial losses because they account for a large proportion of bacterial rot of fruits and vegetables during storage, transit, and marketing.


Subject(s)
Daucus carota/microbiology , Food Contamination/analysis , Food Microbiology , Food Preservation/methods , Consumer Product Safety , DNA, Bacterial/analysis , Daucus carota/standards , Electrophoresis, Gel, Pulsed-Field , Erwinia/genetics , Erwinia/isolation & purification , Food Preservation/standards , Humans , Pectobacterium/genetics , Pectobacterium/isolation & purification , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length , Pseudomonas/genetics , Pseudomonas/isolation & purification
9.
FEMS Microbiol Lett ; 321(1): 10-3, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21539599

ABSTRACT

Propionic acid bacteria (PAB) are important as starter cultures for the dairy industry in the manufacture of Swiss-type cheeses, in which they are involved in the formation of eyes and are responsible for the typical flavour and aroma. These characteristics are mainly due to the classical propionic acid fermentation, but also the conversion of aspartate to fumarate and ammonia by the enzyme aspartase and the subsequent reduction of fumarate to succinate, which occur in dairy Propionibacterium freudenreichii ssp. shermanii and ssp. freudenreichii starter strains. Additionally, the metabolism of free amino acids may be partly responsible for secondary fermentation and the subsequent split defects in cheese matrix. Here a method for aspartase activity was established and a number of dairy propionibacteria belonging to P. freudenreichii ssp. shermanii and freudenreichii were screened for this enzyme activity. A wide range of aspartase activity could be found in PAB isolates originating from cheese. The majority, i.e. 70% of the 100 isolates tested, showed very low levels of aspartate activity.


Subject(s)
Aspartate Ammonia-Lyase/metabolism , Propionibacterium/enzymology , Cheese/analysis , Cheese/microbiology , Enzyme Assays , Food Microbiology , Reproducibility of Results
10.
Appl Environ Microbiol ; 68(12): 5943-51, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12450814

ABSTRACT

So far, the inability to establish viable Lactobacillus surface layer (S-layer) null mutants has hampered the biotechnological applications of Lactobacillus S-layers. In this study, we demonstrate the utilization of Lactobacillus brevis S-layer subunits (SlpA) for the surface display of foreign antigenic epitopes. With an inducible expression system, L. brevis strains producing chimeric S-layers were obtained after testing of four insertion sites in the slpA gene for poliovirus epitope VP1, that comprises 10 amino acids. The epitope insertion site allowing the best surface expression was used for the construction of an integration vector carrying the gene region encoding the c-Myc epitopes from the human c-myc proto-oncogene, which is composed of 11 amino acids. A gene replacement system was optimized for L. brevis and used for the replacement of the wild-type slpA gene with the slpA-c-myc construct. A uniform S-layer, displaying on its surface the desired antigen in all of the S-layer protein subunits, was obtained. The success of the gene replacement and expression of the uniform SlpA-c-Myc recombinant S-layer was confirmed by PCR, Southern blotting MALDI-TOF mass spectrometry, whole-cell enzyme-linked immunosorbent assay, and immunofluorescence microscopy. Furthermore, the integrity of the recombinant S-layer was studied by electron microscopy, which indicated that the S-layer lattice structure was not affected by the presence of c-Myc epitopes. To our knowledge, this is the first successful expression of foreign epitopes in every S-layer subunit of a Lactobacillus S-layer while still maintaining the S-layer lattice structure.


Subject(s)
Bacterial Proteins/biosynthesis , Capsid Proteins/biosynthesis , Epitopes , Lactobacillus/metabolism , Membrane Glycoproteins , Membrane Proteins/biosynthesis , Proto-Oncogene Proteins c-myc/biosynthesis , Recombinant Fusion Proteins/biosynthesis , Bacterial Proteins/genetics , Lactobacillus/genetics , Proto-Oncogene Mas
SELECTION OF CITATIONS
SEARCH DETAIL
...