Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Liver Int ; 40(5): 1005-1015, 2020 05.
Article in English | MEDLINE | ID: mdl-32145703

ABSTRACT

During liver repair after injury, bile secretion has to be tightly modulated in order to preserve liver parenchyma from bile acid (BA)-induced injury. The mechanisms allowing the liver to maintain biliary homeostasis during repair after injury are not completely understood. Besides their historical role in lipid digestion, bile acids (BA) and their receptors constitute a signalling network with multiple impacts on liver repair, both stimulating regeneration and protecting the liver from BA overload. BA signal through nuclear (mainly Farnesoid X Receptor, FXR) and membrane (mainly G Protein-coupled BA Receptor 1, GPBAR-1 or TGR5) receptors to elicit a wide array of biological responses. While a great number of studies have been dedicated to the hepato-protective impact of FXR signalling, TGR5 is by far less explored in this context. Because the liver has to face massive and potentially harmful BA overload after partial ablation or destruction, BA-induced protective responses crucially contribute to spare liver repair capacities. Based on the available literature, the TGR5 BA receptor protects the remnant liver and maintains biliary homeostasis, mainly through the control of inflammation, biliary epithelial barrier permeability, BA pool hydrophobicity and sinusoidal blood flow. Mouse experimental models of liver injury reveal that in the lack of TGR5, excessive inflammation, leaky biliary epithelium and hydrophobic BA overload result in parenchymal insult and compromise optimal restoration of a functional liver mass. Translational perspectives are thus opened to target TGR5 with the aim of protecting the liver in the context of injury and BA overload.


Subject(s)
Bile Acids and Salts , Receptors, G-Protein-Coupled , Animals , Liver , Liver Regeneration , Mice , Signal Transduction
2.
Gut ; 69(1): 146-157, 2020 01.
Article in English | MEDLINE | ID: mdl-30723104

ABSTRACT

OBJECTIVE: We explored the hypothesis that TGR5, the bile acid (BA) G-protein-coupled receptor highly expressed in biliary epithelial cells, protects the liver against BA overload through the regulation of biliary epithelium permeability. DESIGN: Experiments were performed under basal and TGR5 agonist treatment. In vitro transepithelial electric resistance (TER) and FITC-dextran diffusion were measured in different cell lines. In vivo FITC-dextran was injected in the gallbladder (GB) lumen and traced in plasma. Tight junction proteins and TGR5-induced signalling were investigated in vitro and in vivo (wild-type [WT] and TGR5-KO livers and GB). WT and TGR5-KO mice were submitted to bile duct ligation or alpha-naphtylisothiocyanate intoxication under vehicle or TGR5 agonist treatment, and liver injury was studied. RESULTS: In vitro TGR5 stimulation increased TER and reduced paracellular permeability for dextran. In vivo dextran diffusion after GB injection was increased in TGR5-knock-out (KO) as compared with WT mice and decreased on TGR5 stimulation. In TGR5-KO bile ducts and GB, junctional adhesion molecule A (JAM-A) was hypophosphorylated and selectively downregulated among TJP analysed. TGR5 stimulation induced JAM-A phosphorylation and stabilisation both in vitro and in vivo, associated with protein kinase C-ζ activation. TGR5 agonist-induced TER increase as well as JAM-A protein stabilisation was dependent on JAM-A Ser285 phosphorylation. TGR5 agonist-treated mice were protected from cholestasis-induced liver injury, and this protection was significantly impaired in JAM-A-KO mice. CONCLUSION: The BA receptor TGR5 regulates biliary epithelial barrier function in vitro and in vivo through an impact on JAM-A expression and phosphorylation, thereby protecting liver parenchyma against bile leakage.


Subject(s)
Biliary Tract/physiopathology , Cholestasis, Intrahepatic/prevention & control , Receptors, G-Protein-Coupled/physiology , Animals , Bile/metabolism , Bile Acids and Salts/metabolism , Cell Adhesion Molecules/metabolism , Cells, Cultured , Cholestasis, Intrahepatic/metabolism , Electric Impedance , Epithelium/physiopathology , Isonipecotic Acids/pharmacology , Isonipecotic Acids/therapeutic use , Mice, Inbred C57BL , Mice, Knockout , Oximes/pharmacology , Oximes/therapeutic use , Permeability , Phosphorylation/physiology , Receptors, Cell Surface/metabolism , Receptors, G-Protein-Coupled/agonists , Signal Transduction/physiology , Tight Junction Proteins/metabolism
3.
Mol Aspects Med ; 56: 25-33, 2017 08.
Article in English | MEDLINE | ID: mdl-28302491

ABSTRACT

Tissue repair is orchestrated by a finely tuned interplay between processes of regeneration, inflammation and cell protection, allowing organisms to restore their integrity after partial loss of cells or organs. An important, although largely unexplored feature is that after injury and during liver repair, liver functions have to be maintained to fulfill the peripheral demand. This is particularly critical for bile secretion, which has to be finely modulated in order to preserve liver parenchyma from bile-induced injury. However, mechanisms allowing the liver to maintain biliary homeostasis during repair after injury are not completely understood. Besides cytokines and growth factors, bile acids (BA) and their receptors constitute an insufficiently explored signaling network during liver regeneration and repair. BA signal through both nuclear (mainly Farnesoid X Receptor, FXR) and membrane (mainly G Protein-coupled BA Receptor 1, GPBAR-1 or TGR5) receptors which distributions are large in the organism, and which activation elicits a wide array of biological responses. While a number of studies have been dedicated to FXR signaling in liver repair processes, TGR5 remains poorly explored in this context. Because of the massive and potentially harmful BA overload that faces the remnant liver after partial ablation or destruction, both BA-induced adaptive and proliferative responses may stand in a central position to contribute to the regenerative response. Based on the available literature, both BA receptors may act in synergy during the regeneration process, in order to protect the remnant liver and maintain biliary homeostasis, otherwise potentially toxic BA overload would result in parenchymal insult and compromise optimal restoration of a functional liver mass.


Subject(s)
Bile Acids and Salts/metabolism , Gene Expression Regulation , Liver Regeneration/physiology , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, G-Protein-Coupled/genetics , Animals , Bile Acids and Salts/toxicity , Cholesterol/metabolism , Cytokines/genetics , Cytokines/metabolism , Hepatectomy , Hepatocytes/drug effects , Hepatocytes/metabolism , Hepatocytes/pathology , Homeostasis/physiology , Humans , Liver/drug effects , Liver/injuries , Liver/metabolism , Liver/surgery , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...