Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Mol Model ; 29(11): 348, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37874408

ABSTRACT

CONTEXT: In the present work, we investigated the adsorption mechanism of natural sodium (Na), potassium (K), and lithium (Li) atoms and their respective ion on two nanostructures: boron-nitride nanotubes (BNNTs) and beryllium-oxide nanotubes (BeONTs). The main goal of this research is to calculate the gain voltage for Na, K, and Li ionic batteries. Density function theory (DFT) calculations indicated that the adsorption energy between Na + is higher than that of the other cations, and this is particularly clear in the BeONT. Furthermore, gain voltage calculations showed that BNNTs generate a higher potential than BeONTs, with the most significant difference observed in BNNT/Na + . This research provides theoretical insights into the potential uses of these nanostructures as anodes in Na, K, and Li-ion batteries. METHOD: Density function theory used to compute the ground state properties for BeONT and BNNT with and without selected atoms and their ions (Li, K, and Na). B3LYP used for exchange correlation between electrons and ions, and 6-31G* basis set used for all atoms and ions. Gauss Sum 2.2 software used for estimate the density of state (DOS) for all structure under investigation.

2.
Phys Chem Chem Phys ; 25(6): 4472-4480, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36317562

ABSTRACT

Photo-ionization induced ultrafast electron dynamics is considered as a precursor for the slower nuclear dynamics associated with molecular dissociation. Here, using the ab initio multielectron wave-packet propagation method, we study the overall many-electron dynamics, triggered by ionizing the outer-valence orbitals of different tautomers for a prototype molecule with more than one symmetry element. From the time evolution of the initially created averaged hole density of each system, we identify distinctly different charge dynamics responses in the tautomers. We observe that the keto form shows a charge migration direction away from the nitrogen bonded with hydrogen, while in enol-U - away from oxygen bonded to hydrogen. Additionally, the dynamics following the ionization of molecular orbitals with different symmetries reveals that a' orbitals show a fast and highly delocalized charge density in comparison to a'' symmetry. These observations indicate why different tautomers respond differently to an XUV ionization, and might explain the subsequent different fragmentation pathways. An experimental schematics allowing the detection and reconstruction of such charge dynamics is also proposed. Although the present study uses a simple, prototypical bio-relevant molecule, it reveals the explicit role of molecular symmetry and tautomerism in the ionization-triggered charge migration that controls many ultrafast physical, chemical, and biological processes, making tautomeric forms a promising tool of molecular design for desired charge migration.

3.
Phys Chem Chem Phys ; 24(38): 23447-23459, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36128935

ABSTRACT

We critically understand the hydrogen bonding interactions and electronic transitions occurring in a thin film as well as in solution of a photo-responsive polymer, azo-polyurea (azo-PU). We synthesize azo-PU by covalent attachment of the azobenzene chromophore to the main chain of polyurea. Azo-PU shows reversible photoisomerization between trans and cis states upon light exposure, the occurrence of which is typically analysed using the π-π* and n-π* electronic transition peaks in the UV-visible absorption spectrum. We find that the π-π* and n-π* bands undergo a redshift and blueshift respectively on dissolving azo-PU in DMF solvent, resulting in a single overlapped peak in the spectrum. However, upon UV irradiation, these bands split into two independent transitions that are characteristic of azo-PU solid films. These observations are explained based on the changes in polymer-polymer and polymer-solvent interactions through hydrogen bonding and self-aggregation tendency. The experimental findings are corroborated using DFT simulations which provide useful insights into electronic orbital transitions, electron distribution, and hydrogen bonding interaction through IR vibrational modes.

4.
J Comput Chem ; 43(8): 519-538, 2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35084047

ABSTRACT

Motivated by recent experiments, the laser-induced alignment-and-orientation (A&O) dynamics of the prolate symmetric top CH3 X (X = F, Cl, Br, I) molecules is investigated, with particular emphasis on the effect of halogen substitution on the rotational constants, dipole moments, and polarizabilities of these species, as these quantities determine the A&O dynamics. Insight into possible control schemes for preferred A&O dynamics of halogenated molecules and best practices for A&O simulations are provided, as well. It is shown that for accurate A&O -dynamics simulations it is necessary to employ large basis sets and high levels of electron correlation when computing the rotational constants, dipole moments, and polarizabilities. The benchmark-quality values of these molecular parameters, corresponding to the equilibrium, as well as the vibrationally averaged structures are obtained with the help of the focal-point analysis (FPA) technique and explicit electronic-structure computations utilizing the gold-standard CCSD(T) approach, basis sets up to quintuple-zeta quality, core-correlation contributions and, in particular, relativistic effects for CH3 Br and CH3 I. It is shown that the different A&O behavior of the CH3 X molecules in the optical regime is mostly caused by the differences in their polarizability anisotropy, in other terms, the size of the halogen atom. In contrast, the A&O dynamics of the CH3 X series induced by an intense few-cycle THz pulse is mostly governed by changes in the rotational constants, due to the similar dipole moments of the CH3 X molecules. The A&O dynamics is most sensitive to the B rotational constant: even the difference between its equilibrium and vibrationally-averaged values results in noticeably different A&O dynamics. The contribution of rotational states having different symmetry, weighted by nuclear-spin statistics, to the A&O dynamics is also studied.

5.
Sci Rep ; 10(1): 17364, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-33060718

ABSTRACT

We report, for the first time, the influence of oxygen vacancies on band structure and local electronic structure of [Formula: see text] (SZO) nanophosphors by combined first principle calculations based on density functional theory and full multiple scattering theory, correlated with experimental results obtained from X-ray absorption and photoluminescence spectroscopies. The band structure analysis from density functional theory revealed the formation of new energy states in the forbidden gap due to introduction of oxygen vacancies in the system, thereby causing disruption in intrinsic symmetry and altering bond lengths in SZO system. These defect states are anticipated as origin of observed photoluminescence in SZO nanophosphors. The experimental X-ray absorption near edge structure (XANES) at Zn and Sr K-edges were successfully imitated by simulated XANES obtained after removing oxygen atoms around Zn and Sr cores, which affirmed the presence and signature of oxygen vacancies on near edge structure.

6.
ACS Nano ; 10(2): 2406-14, 2016 Feb 23.
Article in English | MEDLINE | ID: mdl-26816347

ABSTRACT

Among the different synthesis approaches to colloidal nanocrystals, a recently developed toolkit is represented by cation exchange reactions, where the use of template nanocrystals gives access to materials that would be hardly attainable via direct synthesis. Besides, postsynthetic treatments, such as thermally activated solid-state reactions, represent a further flourishing route to promote finely controlled cation exchange. Here, we report that, upon in situ heating in a transmission electron microscope, Cu2Se or Cu nanocrystals deposited on an amorphous solid substrate undergo partial loss of Cu atoms, which are then engaged in local cation exchange reactions with Cu "acceptor" phases represented by rod- and wire-shaped CdSe nanocrystals. This thermal treatment slowly transforms the initial CdSe nanocrystals into Cu(2-x)Se nanocrystals, through the complete sublimation of Cd and the partial sublimation of Se atoms. Both Cu "donor" and "acceptor" particles were not always in direct contact with each other; hence, the gradual transfer of Cu species from Cu2Se or metallic Cu to CdSe nanocrystals was mediated by the substrate and depended on the distance between the donor and acceptor nanostructures. Differently from what happens in the comparably faster cation exchange reactions performed in liquid solution, this study shows that slow cation exchange reactions can be performed at the solid state and helps to shed light on the intermediate steps involved in such reactions.

7.
J Nanosci Nanotechnol ; 8(8): 4041-8, 2008 Aug.
Article in English | MEDLINE | ID: mdl-19049174

ABSTRACT

We determine atomic and electronic structures of arm-chair and zigzag boron nitride nanotubes (BN-NTs) of different diameters using first-principles pseudopotential-based density functional theory calculations. We find that the structure of BN-NTs in bundled form is slightly different from that of the isolated BN-NTs, reflecting on the inter-tube interactions. Effects of carbon doping on the electronic structure of (5,5) and (5,0) BN-NTs are determined: carbon substitution either at B-site, being energetically very stable, or at N-site can yield magnetically polarized semiconducting state, whereas carbon substitution at neighbouring B and N sites yields a non-magnetic insulating structure.

9.
J Chem Phys ; 128(4): 044718, 2008 Jan 28.
Article in English | MEDLINE | ID: mdl-18247992

ABSTRACT

We have studied the structural, elastic, and optical properties of selenium nanowires, as well as bulk selenium, by performing first-principles density functional theory calculations. The nanowires are structurally similar to bulk trigonal Se, in that they consist of hexagonal arrays of helices, though there is a slight structural rearrangement in response to the finite size of the nanowires. These small structural changes result in Young's modulus decreasing slightly for progressively thinner nanowires. However, there is a significant effect on electronic structure and optical properties. The thinner the nanowire, the greater the band gap, and the greater the anisotropy in optical conductivity. The latter is due to the effects of finite size being much more marked for the case where the electric field is polarized perpendicular to the helical axis, than in the case where the polarization is parallel to c. For the case of bulk Se, we obtain good agreement with experimental data on the structure, elastic constants, and dielectric function.

10.
J Nanosci Nanotechnol ; 7(6): 1787-92, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17654940

ABSTRACT

We present first-principles pseudopotential-based density functional theory (DFT) calculation of structures, full phonon dispersions and thermal properties of armchair single wall armchair carbon nanotubes (SWCNTs) in the isolated and bundle forms. Comparison between the properties of isolated and bundled nanotubes is used to estimate the intertube interaction. We determine correlation between vibrational modes of a graphene sheet and of the nanotube to understand how rolling of the sheet results in mixing between modes and changes in vibrational spectrum. The radial breathing mode hardens with increasing diameter (or decreasing curvature). We estimate thermal expansion coefficient of nanotubes within a quasiharmonic approximation and identify the modes that dominate thermal expansion of some of these SWCNTs both at low and high temperatures.


Subject(s)
Crystallization/methods , Models, Chemical , Models, Molecular , Nanostructures/chemistry , Nanostructures/ultrastructure , Nanotechnology/methods , Computer Simulation , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Surface Properties , Vibration
11.
J Phys Chem A ; 111(28): 6183-90, 2007 Jul 19.
Article in English | MEDLINE | ID: mdl-17585841

ABSTRACT

The binding strength of the carboxylic acid group (-COOH) with different divalent metal ions displays considerable variation in arachidic acid (AA) thin films. It is considered that in AA thin films the metal ions straddle the hydrophilic regions of the stacked bilayers of AA molecules via formation of carboxylates. In this study first the uptake of different divalent cations in films of AA is estimated by atomic absorption spectroscopy (AAS). Through the amount of cation uptake, it is found that the strength of binding of different cations varies as Ca2+>Co2+>Pb2+>Cd2+. Variation in the binding strength of different ions is also manifested in experiments where AA thin films are exposed to metal ion mixtures. The higher binding strength of AA with certain metal ions when exposed individually, as well as the preference over the other metal ions when exposed to mixtures, reveal some interesting deviation from the expected behavior based on considerations of ionic radii. For example, Pb2+ is always found to bind to AA much more strongly than Cd2+ even though the latter has smaller ionic radius, indicating that other factors also play an important role in governing the binding strength trends apart from the effects of ionic radii. Then, to get a more meaningful knowledge regarding the binding capability, first-principles calculations based on density functional theory have been applied to study the interaction of different cations with the simplest carboxylic acid, acetic acid, that can result in formation of metal diacetates. Their electronic and molecular structures, cohesive energies, and stiffness of the local potential energy well at the cation (M) site are determined and attempts are made to understand the diversity in geometry and the properties of binding of different metal ions with -COOH group. We find that the calculated M-O bond energies depend sensitively on the chemistry of M atom and follow the experimentally observed trends quite accurately. The trends in M-O bond energies and hence the total M-acetate binding energy trends can actually be related to their molecular structures that fall into different categories: Ca and Cd have tetrahedral coordination; Fe, Ni, and Co exhibit planar 4-fold coordination; and Pb is off-centered from the planar structure (forming pyramidal structure) due to its stereochemically active lone pair of electrons.


Subject(s)
Carboxylic Acids/chemistry , Eicosanoic Acids/chemistry , Metals, Heavy/chemistry , Cations, Divalent/chemistry , Energy Transfer , Models, Molecular , Quantum Theory
SELECTION OF CITATIONS
SEARCH DETAIL
...