Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Sci ; 11(12): 3258-3267, 2020 Feb 27.
Article in English | MEDLINE | ID: mdl-34122833

ABSTRACT

The synthesis of a range of brominated-B n -containing (n = 1, 2) polycyclic aromatic hydrocarbons (PAHs) is achieved simply by reacting BBr3 with appropriately substituted alkynes via a bromoboration/electrophilic C-H borylation sequence. The brominated-B n -PAHs were isolated as either the borinic acids or B-mesityl-protected derivatives, with the latter having extremely deep LUMOs for the B2-doped PAHs (with one example having a reduction potential of E 1/2 = -0.96 V versus Fc+/Fc, Fc = ferrocene). Mechanistic studies revealed the reaction sequence proceeds by initial alkyne 1,1-bromoboration. 1,1-Bromoboration also was applied to access a number of unprecedented 1-bromo-2,2-diaryl substituted vinylboronate esters directly from internal alkynes. Bromoboration/C-H borylation installs useful C-Br units onto the B n -PAHs, which were utilised in Negishi coupling reactions, including for the installation of two triarylamine donor (D) groups onto a B2-PAH. The resultant D-A-D molecule has a low optical gap with an absorption onset at 750 nm and emission centered at 810 nm in the solid state.

2.
Chem Commun (Camb) ; 54(68): 9490-9493, 2018 Aug 21.
Article in English | MEDLINE | ID: mdl-30087969

ABSTRACT

A series of Bn-PAHs have been prepared by functionalisation of a B1-PAH, leading to the first only boron doped B3-PAH to the best of our knowledge. These Bn-PAHs represent the first three members of a series of {B-Mes} fused oligo-naphthalenes and trends in key properties of this series have been elucidated.

3.
Chem Sci ; 8(12): 7969-7977, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-29568443

ABSTRACT

Heteroatom doping into polyaromatic hydrocarbons (PAHs) is a powerful approach for modifying key physical properties, however, there are extremely few modular routes that enable facile formation of B-, B2- and B,N-(specifically not containing direct B-N bonds) doped PAHs despite the growing importance of these materials. Sequential, one pot borylative cyclisation/intramolecular electrophilic C-H borylation of naphthyl-alkynes provides a simple new route to access novel B-, B,N- and B2-doped (PAHs). The initial products, dihydronaphthalene/dihydroquinoline B-mesityl PAHs, were reacted with [Ph3C][BF4]/pyridyl base to form the oxidised B-, and B,N-doped PAHs. However, for B-triisopropylphenyl (Trip) PAH congeners oxidation has to be performed prior to Trip installation due to preferential oxidation of an isopropylaryl moiety to the styrene. This alternative sequence enables access to Trip-B-PAHs and to structurally constrained B and B2-PAHs. Analysis of the solid state structures and optoelectronic properties of these PAHs confirm that frontier orbital energies, extended packing structures, Stokes shift and quantum yields all can be rationally modified using this methodology. The simplicity of this synthetic approach makes it a powerful tool for rapidly generating novel bench stable boron doped PAHs, which is important for facilitating further structure-property relationship studies and the wider utilisation of these materials in optoelectronic applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...