Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Environ Sci Pollut Res Int ; 30(42): 95367-95375, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37548793

ABSTRACT

In recent decades, contamination of the environment with microplastics and microfibers has been recognized as a pervasive and ubiquitous issue of global concern. While much research in this field has been undertaken in marine environments, more recent studies have identified rivers as major conveyors of plastic pollution from terrestrial into marine systems. However, reports on the levels and composition of microplastic and microfiber contamination in rivers of the Canadian prairie region, specifically the South Saskatchewan River (SSR), are scarce, which leaves this vital source of water for societies and ecosystems in a vulnerable state. To fill this gap, we obtained samples from seven sites along the Saskatchewan portion of the SSR, as well as three stormwater retention ponds (SRP) in the city of Saskatoon during the spring, summer, and fall of 2020. We used optical and Raman microscopy to enumerate and characterize particles in these samples. Total levels of particles and fibers in all samples ranged from 32 to 116 particles m-3. Most particles (approximately 77%) were natural fibers, while polymers accounted for the remaining 33%. Average microplastic levels were lower (3.18 ± 3 particles m-3) downstream of Lake Diefenbaker, a large reservoir on the SSR, compared to upstream (12.0 ± 9 particles m-3). Retention of microplastics in the reservoir could explain the lower mean microplastic concentration of 4.43 ± 3 particles m-3 recorded in the SSR compared to mean concentrations of 26.2 ± 18 particles m-3 reported in the North Saskatchewan River, which is not dammed. This study is among the first to describe microplastic and microfiber levels in the SSR and thereby helps improve our understanding of this pervasive environmental contaminant on the Canadian prairies.


Subject(s)
Microplastics , Water Pollutants, Chemical , Plastics , Ponds , Saskatchewan , Ecosystem , Water Pollutants, Chemical/analysis , Environmental Monitoring
2.
Environ Sci Process Impacts ; 25(4): 781-790, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37005869

ABSTRACT

High levels of reactive chemicals may be emitted to the indoor air during household surface cleaning, leading to poorer air quality and potential health hazards. Hydrogen peroxide (H2O2)-based cleaners have gained popularity in recent years, especially in times of COVID-19. Still, little is known regarding the effects of H2O2 cleaning on indoor air composition. In this work we monitored time-resolved H2O2 concentrations during a cleaning campaign in an occupied single-family residence using a cavity ring-down spectroscopy (CRDS) H2O2 analyzer. During the cleaning experiments, we investigated how unconstrained (i.e., "real-life") surface cleaning with a hydrogen peroxide solution influenced the indoor air quality of the house, and performed controlled experiments to investigate factors that could influence H2O2 levels including surface area and surface material, ventilation, and dwell time of the cleaning solution. Mean peak H2O2 concentrations observed following all surface cleaning events were 135 ppbv. The factors with the greatest effect on H2O2 levels were distance of the cleaned surface from the detector inlet, type of surface cleaned, and solution dwell time.


Subject(s)
Air Pollution, Indoor , COVID-19 , Humans , Hydrogen Peroxide , Air Pollution, Indoor/analysis , Housing , Ventilation
3.
Environ Sci Process Impacts ; 25(1): 56-65, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36602445

ABSTRACT

Cleaning surfaces with sodium hypochlorite (NaOCl) bleach can lead to high levels of gaseous chlorine (Cl2) and hypochlorous acid (HOCl); these have high oxidative capacities and are linked to respiratory issues. We developed a novel spectral analysis procedure for a cavity ring-down spectroscopy (CRDS) hydrogen peroxide (H2O2) analyzer to enable time-resolved (3 s) HOCl quantification. We measured HOCl levels in a residential bathroom while disinfecting a bathtub and sink, with a focus on spatial and temporal trends to improve our understanding of exposure risks during bleach use. Very high (>10 ppmv) HOCl levels were detected near the bathtub, with lower levels detected further away. Hypochlorous acid concentrations plateaued in the room at a level that depended on distance from the bathtub. This steady-state concentration was maintained until the product was removed by rinsing. Mobile experiments with the analyzer inlet secured to the researcher's face were conducted to mimic potential human exposure to bleach emissions. The findings from mobile experiments were consistent with the spatial and temporal trends observed in the experiments with fixed inlet locations. This work provides insight on effective strategies to reduce exposure risk to emissions from bleach and other cleaning products.


Subject(s)
Hydrogen Peroxide , Hypochlorous Acid , Humans , Hypochlorous Acid/chemistry , Sodium Hypochlorite/chemistry , Household Products , Chlorine
4.
Environ Sci Technol ; 57(2): 896-908, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36603843

ABSTRACT

The hydroxyl radical (OH) is the dominant oxidant in the outdoor environment, controlling the lifetimes of volatile organic compounds (VOCs) and contributing to the growth of secondary organic aerosols. Despite its importance outdoors, there have been relatively few measurements of the OH radical in indoor environments. During the House Observations of Microbial and Environmental Chemistry (HOMEChem) campaign, elevated concentrations of OH were observed near a window during cooking events, in addition to elevated mixing ratios of nitrous acid (HONO), VOCs, and nitrogen oxides (NOX). Particularly high concentrations were measured during the preparation of a traditional American Thanksgiving dinner, which required the use of a gas stove and oven almost continually for 6 h. A zero-dimensional chemical model underpredicted the measured OH concentrations even during periods when direct sunlight illuminated the area near the window, which increases the rate of OH production by photolysis of HONO. Interferences with measurements of nitrogen dioxide (NO2) and ozone (O3) suggest that unmeasured photolytic VOCs were emitted during cooking events. The addition of a VOC that photolyzes to produce peroxy radicals (RO2), similar to pyruvic acid, into the model results in better agreement with the OH measurements. These results highlight our incomplete understanding of the nature of oxidation in indoor environments.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Ozone , Hydroxyl Radical/analysis , Hydroxyl Radical/chemistry , Photolysis , Air Pollution, Indoor/analysis , Nitrogen Oxides/analysis , Ozone/analysis , Cooking , Nitrous Acid/analysis , Nitrous Acid/chemistry , Air Pollutants/analysis
5.
Indoor Air ; 32(6): e13054, 2022 06.
Article in English | MEDLINE | ID: mdl-35762241

ABSTRACT

The importance of photolysis as an initiator of air chemistry outdoors is widely recognized, but its role in chemical processing indoors is often ignored. This paper uses recent experimental data to modify a detailed chemical model, using it to investigate the impacts of glass type, artificial indoor lighting, cloudiness, time of year and latitude on indoor photolysis rates and hence indoor air chemistry. Switching from an LED to an uncovered fluorescent tube light increased predicted indoor hydroxyl radical concentrations by ~13%. However, moving from glass that transmitted outdoor light at wavelengths above 380 nm to one that transmitted sunlight above 315 nm led to an increase in predicted hydroxyl radicals of more than 400%. For our studied species, including ozone, nitrogen oxides, nitrous acid, formaldehyde, and hydroxyl radicals, the latter were most sensitive to changes in indoor photolysis rates. Concentrations of nitrogen dioxide and formaldehyde were largely invariant, with exchange with outdoors and internal deposition controlling their indoor concentrations. Modern lights such as LEDs, together with low transmission glasses, will likely reduce the effects of photolysis indoors and the production of potentially harmful species. Research is needed on the health effects of different indoor air mixtures to confirm this conclusion.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Air Pollutants/analysis , Air Pollution, Indoor/analysis , Formaldehyde/analysis , Hydroxyl Radical/analysis , Nitrous Acid/analysis , Photolysis
6.
J Am Chem Soc ; 144(2): 751-756, 2022 01 19.
Article in English | MEDLINE | ID: mdl-34982936

ABSTRACT

Heterogeneous processes can control atmospheric composition. Snow and ice present important, but poorly understood, reaction media that can greatly alter the composition of air in the cryosphere in polar and temperate regions. Atmospheric scientists struggle to reconcile model predictions with field observations in snow-covered regions due in part to experimental challenges associated with monitoring reactions at air-ice interfaces, and debate regarding reaction kinetics and mechanisms has persisted for over a decade. In this work, we use wavelength-resolved fluorescence microscopy to determine the distribution and chemical speciation of the pollutant anthracene at environmentally relevant frozen surfaces. Our results indicate that anthracene adsorbs to frozen surfaces in monomeric form, but that following lateral diffusion, molecules ultimately reside within brine channels at saltwater ice surfaces, and in micron-sized clusters at freshwater ice surfaces; emission profiles indicate extensive self-association. We also measure anthracene photodegradation kinetics in aqueous solution and artificial snow prepared from frozen freshwater and saltwater solutions. Our results suggest that anthracene─and likely other aromatic pollutants─undergo bimolecular photodegradation at the surface of freshwater ice and sea ice, but not at the surface of frozen organic matter. These results will improve predictions of pollutant fate and exposure risk in the cryosphere. The techniques used can be applied to numerous surfaces within and beyond the atmospheric sciences.

7.
Indoor Air ; 32(1): e12964, 2022 01.
Article in English | MEDLINE | ID: mdl-34854500

ABSTRACT

We made intensive measurements of wavelength-resolved spectral irradiance in a test house during the HOMEChem campaign and report diurnal profiles and two-dimensional spatial distribution of photolysis rate constants (J) of several important indoor photolabile gases. Results show that sunlight entering through windows, which was the dominant source of ultraviolet (UV) light in this house, led to clear diurnal cycles, and large time- and location-dependent variations in local gas-phase photochemical activity. Local J values of several key indoor gases under direct solar illumination were 1.8-7.4 times larger-and more strongly dependent on time, solar zenith angle, and incident angle of sunlight relative to the window-than under diffuse sunlight. Photolysis rate constants were highly spatially heterogeneous and fast photochemical reactions in the gas phase were generally confined to within tens of cm of the region that were directly sunlit. Opening windows increased UV photon fluxes by 3 times and increased predicted local hydroxyl radical (OH) concentrations in the sunlit region by 4.5 times to 3.2 × 107  molec cm-3 due to higher J values and increased contribution from O3 photolysis. These results can be used to improve the treatment of photochemistry in indoor chemistry models and are a valuable resource for future studies that use the publicly available HOMEChem measurements.


Subject(s)
Air Pollution, Indoor , Nitrous Acid , Air Pollution, Indoor/analysis , Gases , Hydroxyl Radical/analysis , Photolysis
8.
J Phys Chem A ; 125(40): 8925-8932, 2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34597045

ABSTRACT

At the air-ice interface, some aromatic compounds such as benzene and anthracene are surprisingly unreactive toward OH. This may be a consequence of the poor solvation of these compounds at the interface, resulting in clustering there. We test this hypothesis by comparing the reaction of OH with pyrene, a 4-ring polyaromatic hydrocarbon (PAH), to reactions of OH with the more water-soluble compounds coumarin and 7-hydroxycoumarin (7OHC). We observe that OH reacts readily with coumarin and 7OHC at both liquid and frozen air-water interfaces. Pyrene, a much less soluble compound, reacts with OH at the liquid surface but not at the air-ice interface. We report evidence of pyrene aggregation at the ice surface based on its broadened and red-shifted emission spectrum alongside fluorescence mapping of anthracene, a closely related 3-ring PAH, which shows bunching at the ice surface. By contrast, fluorescence mapping shows that coumarin is fairly homogeneously distributed at the air-ice interface. Together, these results suggest that the limited reactivity of some compounds toward OH at the ice surface may be a consequence of their propensity to self-aggregate, demonstrating that chemical morphology can play an important role in reactions at the ice surface.

9.
Indoor Air ; 31(4): 1187-1198, 2021 07.
Article in English | MEDLINE | ID: mdl-33373097

ABSTRACT

We measured wavelength-resolved ultraviolet (UV) irradiance in multiple indoor environments and quantified the effects of variables such as light source, solar angles, cloud cover, window type, and electric light color temperature on indoor photon fluxes. The majority of the 77 windows and window samples investigated completely attenuated sunlight at wavelengths shorter than 320 nm; despite variations among individual windows leading to differences in indoor HONO photolysis rate constants (JHONO ) and local hydroxyl radical (OH) concentrations of up to a factor of 50, wavelength-resolved transmittance was similar between windows in residential and non-residential buildings. We report mathematical relationships that predict indoor solar UV irradiance as a function of solar zenith angle, incident angle of sunlight on windows, and distance from windows and surfaces for direct and diffuse sunlight. Using these relationships, we predict elevated indoor steady-state OH concentrations (0.80-7.4 × 106 molec cm-3 ) under illumination by direct and diffuse sunlight and fluorescent tubes near windows or light sources. However, elevated OH concentrations at 1 m from the source are only predicted under direct sunlight. We predict that reflections from indoor surfaces will have minor contributions to room-averaged indoor UV irradiance. These results may improve parameterization of indoor chemistry models.


Subject(s)
Air Pollution, Indoor , Nitrous Acid , Air Pollution, Indoor/analysis , Hydroxyl Radical/analysis , Photochemistry , Photolysis , Ultraviolet Rays
10.
Commun Chem ; 4(1): 110, 2021 Aug 12.
Article in English | MEDLINE | ID: mdl-36697551

ABSTRACT

Historically air constituents have been assumed to be well mixed in indoor environments, with single point measurements and box modeling representing a room or a house. Here we demonstrate that this fundamental assumption needs to be revisited through advanced model simulations and extensive measurements of bleach cleaning. We show that inorganic chlorinated products, such as hypochlorous acid and chloramines generated via multiphase reactions, exhibit spatial and vertical concentration gradients in a room, with short-lived ⋅OH radicals confined to sunlit zones, close to windows. Spatial and temporal scales of indoor constituents are modulated by rates of chemical reactions, surface interactions and building ventilation, providing critical insights for better assessments of human exposure to hazardous pollutants, as well as the transport of indoor chemicals outdoors.

11.
Environ Sci Technol ; 54(24): 15643-15651, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33258369

ABSTRACT

Activities such as household cleaning can greatly alter the composition of air in indoor environments. We continuously monitored hydrogen peroxide (H2O2) from household non-bleach surface cleaning in a chamber designed to simulate a residential room. Mixing ratios of up to 610 ppbv gaseous H2O2 were observed following cleaning, orders of magnitude higher than background levels (sub-ppbv). Gaseous H2O2 levels decreased rapidly and irreversibly, with removal rate constants (kH2O2) 17-73 times larger than air change rate (ACR). Increasing the surface-area-to-volume ratio within the room caused peak H2O2 mixing ratios to decrease and kH2O2 to increase, suggesting that surface uptake dominated H2O2 loss. Volatile organic compound (VOC) levels increased rapidly after cleaning and then decreased with removal rate constants 1.2-7.2 times larger than ACR, indicating loss due to surface partitioning and/or chemical reactions. We predicted photochemical radical production rates and steady-state concentrations in the simulated room using a detailed chemical model for indoor air (the INDCM). Model results suggest that, following cleaning, H2O2 photolysis increased OH concentrations by 10-40% to 9.7 × 105 molec cm-3 and hydroperoxy radical (HO2) concentrations by 50-70% to 2.3 × 107 molec cm-3 depending on the cleaning method and lighting conditions.


Subject(s)
Air Pollution, Indoor , Volatile Organic Compounds , Air Pollution, Indoor/analysis , Gases , Hydrogen Peroxide , Models, Chemical , Volatile Organic Compounds/analysis
12.
Indoor Air ; 30(6): 1241-1255, 2020 11.
Article in English | MEDLINE | ID: mdl-32485006

ABSTRACT

Effective cleaning techniques are essential for the sterilization of rooms in hospitals and industry. No-touch devices (NTDs) that use fumigants such as hydrogen peroxide (H2 O2 ), formaldehyde (HCHO), ozone (O3 ), and chlorine dioxide (OClO) are a recent innovation. This paper reports a previously unconsidered potential consequence of such cleaning technologies: the photochemical formation of high concentrations of hydroxyl radicals (OH), hydroperoxy radicals (HO2 ), organic peroxy radicals (RO2 ), and chlorine radicals (Cl) which can form harmful reaction products when exposed to chemicals commonly found in indoor air. This risk was evaluated by calculating radical production rates and concentrations based on measured indoor photon fluxes and typical fumigant concentrations during and after cleaning events. Sunlight and fluorescent tubes without covers initiated photolysis of all fumigants, and plastic-covered fluorescent tubes initiated photolysis of only some fumigants. Radical formation was often dominated by photolysis of fumigants during and after decontamination processes. Radical concentrations were predicted to be orders of magnitude greater than background levels during and immediately following cleaning events with each fumigant under one or more illumination condition. Maximum predicted radical concentrations (1.3 × 107 molecule cm-3 OH, 2.4 ppb HO2 , 6.8 ppb RO2 and 2.2 × 108 molecule cm-3 Cl) were much higher than baseline concentrations. Maximum OH concentrations occurred with O3 photolysis, HO2 with HCHO photolysis, and RO2 and Cl with OClO photolysis. Elevated concentrations may persist for hours after NTD use, depending on the air change rate and air composition. Products from reactions involving radicals could significantly decrease air quality when disinfectants are used, leading to adverse health effects for occupants.


Subject(s)
Air Pollution, Indoor/statistics & numerical data , Hospitals , Photolysis , Chlorine , Formaldehyde , Photochemical Processes , Sunlight
13.
Environ Sci Technol ; 54(3): 1730-1739, 2020 02 04.
Article in English | MEDLINE | ID: mdl-31940195

ABSTRACT

We report elevated levels of gaseous inorganic chlorinated and nitrogenated compounds in indoor air while cleaning with a commercial bleach solution during the House Observations of Microbial and Environmental Chemistry field campaign in summer 2018. Hypochlorous acid (HOCl), chlorine (Cl2), and nitryl chloride (ClNO2) reached part-per-billion by volume levels indoors during bleach cleaning-several orders of magnitude higher than typically measured in the outdoor atmosphere. Kinetic modeling revealed that multiphase chemistry plays a central role in controlling indoor chlorine and reactive nitrogen chemistry during these periods. Cl2 production occurred via heterogeneous reactions of HOCl on indoor surfaces. ClNO2 and chloramine (NH2Cl, NHCl2, NCl3) production occurred in the applied bleach via aqueous reactions involving nitrite (NO2-) and ammonia (NH3), respectively. Aqueous-phase and surface chemistry resulted in elevated levels of gas-phase nitrogen dioxide (NO2). We predict hydroxyl (OH) and chlorine (Cl) radical production during these periods (106 and 107 molecules cm-3 s-1, respectively) driven by HOCl and Cl2 photolysis. Ventilation and photolysis accounted for <50% and <0.1% total loss of bleach-related compounds from indoor air, respectively; we conclude that uptake to indoor surfaces is an important additional loss process. Indoor HOCl and nitrogen trichloride (NCl3) mixing ratios during bleach cleaning reported herein are likely detrimental to human health.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Chlorine , Gases , Humans , Hypochlorous Acid , Ventilation
14.
Environ Sci Process Impacts ; 21(8): 1374-1383, 2019 Aug 14.
Article in English | MEDLINE | ID: mdl-31225544

ABSTRACT

Understanding the oxidizing environment indoors is important for predicting indoor air quality and its impact on human health. We made continuous time-resolved measurements (30 s) of several oxidants and oxidant precursors (collectively referred to as oxidant*): ozone (O3), nitric oxide (NO), and NO2* - the sum of nitrogen dioxide (NO2) and nitrous acid (HONO). These species were measured in three indoor environments - an occupied residence, a chemistry laboratory, and an academic office - in Syracuse, New York, during two seasons in 2017 and 2018. Oxidant* levels differed greatly between the residence, the lab and the office. Indoor-to-outdoor ratios (I/O) of O3 were 0.03 and 0.67 in the residence and office; I/ONO (I/ONO2*) were 11.70 (1.26) in the residence and 0.13 (1.70) in the office. Little seasonal variability was observed in the lab and office, but O3 and NO2* levels in the residence were greater in spring than in winter, while NO levels were lower. Human activities such as cooking and opening patio doors resulted in large changes in oxidant* mixing ratios in the residence. In situ chamber experiments demonstrated that the increase in O3 and NO2* levels during door-open periods was due to a combination of physical mixing between indoor and outdoor air, gas-phase production of NO2 from O3-NO chemistry, and heterogeneous formation of HONO on indoor surfaces. Our results also highlight the importance of chemistry (with NO, alkenes, and surfaces) in O3 mixing ratios in the residence, especially during door-open periods.


Subject(s)
Air Pollutants/analysis , Air Pollution, Indoor/analysis , Housing/standards , Nitrogen Oxides/analysis , Ozone/analysis , Seasons , Cooking , Humans , New York
15.
Environ Sci Process Impacts ; 21(7): 1076-1084, 2019 Jul 17.
Article in English | MEDLINE | ID: mdl-31241094

ABSTRACT

Dissolved organic matter (DOM) is a common solute in snow and ice at Earth's surface. Its effects on reaction kinetics in ice and at air-ice interfaces can be large, but are currently difficult to quantify. We used Raman microscopy to characterize the surface and bulk of frozen aqueous solutions containing humic acid, sodium dodecyl sulfate (SDS), and citric acid at a range of concentrations and temperatures. The surface-active species (humic acid and SDS) were distributed differently than citric acid. Humic acid and SDS are almost completely excluded to the air-ice interface during freezing, where they form a film that coats the surface nearly completely. A liquid layer that coats the majority of the surface was observed at all humic acid and SDS concentrations. Citric acid, which is smaller and less surface active, is excluded to liquid channels at the air-ice interface and within the ice bulk, as has previously been reported for ionic solutes such as sodium chloride. Incomplete surface wetting was observed at all citric acid concentrations and at all temperatures (up to -5 °C). Citric acid appears to be solvated in frozen samples, but SDS and humic acid do not. These results will improve our understanding of the effects of organic solutes on environmental and atmospheric chemistry within ice and at air-ice interfaces.


Subject(s)
Air/analysis , Humic Substances/analysis , Ice Cover/chemistry , Citric Acid/analysis , Cold Temperature , Freezing , Kinetics , Models, Theoretical , Sodium Dodecyl Sulfate/analysis , Solubility , Solutions , Spectrum Analysis, Raman , Surface-Active Agents/analysis
16.
Environ Sci Process Impacts ; 21(8): 1229-1239, 2019 Aug 14.
Article in English | MEDLINE | ID: mdl-31173015

ABSTRACT

The chemistry of oxidants and their precursors (oxidants*) plays a central role in outdoor environments but its importance in indoor air remains poorly understood. Ozone (O3) chemistry is important in some indoor environments and, until recently, ozone was thought to be the dominant oxidant indoors. There is now evidence that formation of the hydroxyl radical by photolysis of nitrous acid (HONO) and formaldehyde (HCHO) may be important indoors. In the past few years, high time-resolution measurements of oxidants* indoors have become more common and the importance of event-based release of oxidants* during activities such as cleaning has been proposed. Here we review the current understanding of oxidants* indoors, including drivers of the formation and loss of oxidants*, levels of oxidants* in indoor environments, and important directions for future research.


Subject(s)
Air Pollutants/analysis , Air Pollution, Indoor/analysis , Hydroxyl Radical/analysis , Lighting , Oxidants , Photolysis , Air Pollutants/radiation effects , Formaldehyde/analysis , Formaldehyde/radiation effects , Hydroxyl Radical/radiation effects , Nitrous Acid/analysis , Nitrous Acid/radiation effects , Ozone/analysis , Ozone/radiation effects
17.
Indoor Air ; 29(1): 70-78, 2019 01.
Article in English | MEDLINE | ID: mdl-30288793

ABSTRACT

To improve our understanding of chlorine chemistry indoors, reactive chlorine species such as hydrogen chloride (HCl) must be analyzed using fast time-response measurement techniques. Although well studied outdoors, sources of HCl indoors are unknown. In this study, mixing ratios of gaseous HCl were measured at 0.5 Hz in the indoor environment using a cavity ring-down spectroscopy (CRDS) instrument. The CRDS measurement rate provides a major advance in observational capability compared to other established techniques. Measurements of HCl were performed during three types of household activities: (a) floor exposure to bleach, (b) chlorinated and nonchlorinated detergent use in household dishwashers, and (c) cooking events. Surface application of bleach resulted in a reproducible increase of 0.1 ppbv in the affected room. Emissions of HCl from automated dishwashers were observed only when chlorinated detergents were used, with additional HCl emitted during the drying cycle. Increased mixing ratios of HCl were also observed during meal preparation on an electric element stovetop. These observations of HCl derived from household activities indicate either direct emission or secondary production of HCl via chlorine atoms is possible. Calculations of photolysis rate constants of chlorine atom precursors provide evidence that photolysis may contribute to indoor HCl levels.


Subject(s)
Air Pollution, Indoor/analysis , Environmental Monitoring/methods , Hydrochloric Acid/analysis , Air Pollutants/analysis , Cooking , Gases/analysis , Housing , Humans
19.
Environ Sci Technol ; 52(15): 8355-8364, 2018 08 07.
Article in English | MEDLINE | ID: mdl-29973042

ABSTRACT

Indoor oxidizing capacity in occupied residences is poorly understood. We made simultaneous continuous time-resolved measurements of ozone (O3), nitric oxide (NO), nitrogen dioxide (NO2), and nitrous acid (HONO) for two months in an occupied detached home with gas appliances in Syracuse, NY. Indoor NO and HONO mixing ratios were higher than those outdoors, whereas O3 was much lower (sub-ppbv) indoors. Cooking led to peak NO, NO2, and HONO levels 20-100 times greater than background levels; HONO mixing ratios of up to 50 ppbv were measured. Our results suggest that many reported NO2 levels may have a large positive bias due to HONO interference. Nitrous acid, NO2, and NO were removed from indoor air more rapidly than CO2, indicative of reactive removal processes or surface uptake. We measured spectral irradiance from sunlight entering the residence through glass doors; hydroxyl radical (OH) production rates of (0.8-10) × 107 molecules cm-3 s-1 were calculated in sunlit areas due to HONO photolysis, in some cases exceeding rates expected from ozone-alkene reactions. Steady-state nitrate radical (NO3) mixing ratios indoors were predicted to be lower than 1.65 × 104 molecules cm-3. This work will help constrain the temporal nature of oxidant concentrations in occupied residences and will improve indoor chemistry models.


Subject(s)
Air Pollution, Indoor , Nitrous Acid , New York , Nitric Oxide , Nitrogen Dioxide
20.
J Phys Chem A ; 121(40): 7619-7626, 2017 Oct 12.
Article in English | MEDLINE | ID: mdl-28902519

ABSTRACT

We measured photolysis kinetics of the PAH anthracene in aqueous solution, in bulk ice, and at ice surfaces in the presence and absence of chromophoric dissolved organic matter (CDOM). Self-association, which occurs readily at ice surfaces, may be responsible for the faster anthracene photolysis observed there. Photolysis rate constants in liquid water increased under conditions where anthracene self-association was observed. Concomitantly, kinetics changed from first-order to second-order, indicating that the photolysis mechanism at ice surfaces might be different than that in aqueous solution. Other factors that could lead to faster photolysis at ice surfaces were also investigated. Increased photon fluxes due to scattering in the ice samples can account for at most 20% of the observed rate increase, and other factors including singlet oxygen (1O2*) production and changes in pH and polarity were determined not to be responsible for the faster photolysis. CDOM (in the form of fulvic acid (FA)) did not affect anthracene photolysis kinetics in aqueous solution but suppressed photolysis in ice cubes and ice granules (by 30% and 56%, respectively). This was primarily due to competitive photon absorption (the inner filter effect). Freeze-concentration (or "salting out") appears to slightly increase the suppressing effects of FA on anthracene photolysis. This may be due to increased competitive photon absorption or to physical interactions between anthracene and FA.

SELECTION OF CITATIONS
SEARCH DETAIL
...