Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Nat Cancer ; 5(1): 47-65, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37904045

ABSTRACT

Telomerase enables replicative immortality in most cancers including acute myeloid leukemia (AML). Imetelstat is a first-in-class telomerase inhibitor with clinical efficacy in myelofibrosis and myelodysplastic syndromes. Here, we develop an AML patient-derived xenograft resource and perform integrated genomics, transcriptomics and lipidomics analyses combined with functional genetics to identify key mediators of imetelstat efficacy. In a randomized phase II-like preclinical trial in patient-derived xenografts, imetelstat effectively diminishes AML burden and preferentially targets subgroups containing mutant NRAS and oxidative stress-associated gene expression signatures. Unbiased, genome-wide CRISPR/Cas9 editing identifies ferroptosis regulators as key mediators of imetelstat efficacy. Imetelstat promotes the formation of polyunsaturated fatty acid-containing phospholipids, causing excessive levels of lipid peroxidation and oxidative stress. Pharmacological inhibition of ferroptosis diminishes imetelstat efficacy. We leverage these mechanistic insights to develop an optimized therapeutic strategy using oxidative stress-inducing chemotherapy to sensitize patient samples to imetelstat causing substantial disease control in AML.


Subject(s)
Ferroptosis , Leukemia, Myeloid, Acute , Oligonucleotides , Telomerase , Humans , Telomerase/genetics , Telomerase/metabolism , Leukemia, Myeloid, Acute/drug therapy , Fatty Acids
2.
Article in English | MEDLINE | ID: mdl-35649672

ABSTRACT

Brazil is one of the largest consumers of pesticides in the world. This high consumption has resulted in higher potential health risk to agricultural farm workers due to occupational exposure. Hence, the aim of this study is to evaluate genomic instability, using Buccal Micronucleus Cytome (BMCyt) and telomere length (TL) measurement as biomarkers of occupational exposure to pesticides in rural workers living in the State of São Paulo, Brazil. Genomic instability was evaluated in 81 pesticide-exposed farm workers (69 males and 12 females) with a mean age of 49.16 ± 10.06 years and a mean time job of 30.00 ± 14.00 years,81 non-exposed individuals (62 males and 15 females) with a mean age of 47.87 ± 10.66 years. BMCyt results showed significantly higher levels of cell damage (micronuclei and binucleated cells) and cell death (karyorrhectic and condensed chromatin cells) in subjects exposed to pesticide when compared to those non-exposed (p < 0.05). Although our results did not show significant differences in TL among exposed and non-exposed groups, effects in TL due to pesticide exposure was found in a multivariable linear regression model when we stratified the groups by age (≤ 49 years and ≥ 50 years old; ß = 11.21, p = 0.006). In addition, TL reduction on was identified in relation to an increase in cigarette pack consumption (ß = -0.633, p = 0.045). Furthermore, exposure to specific pesticides presented different effects in TL. Cypermethrin exposure resulted in a reduction in TL (ß = -18.039, p = 0.018), while abamectin exposure led to an increase in TL (ß = 23.990, p = 0.007). Thus, our findings substantiate genomic instability due to pesticides exposure.


Subject(s)
Farmers , Pesticides , Adult , Brazil , DNA Damage , Female , Genomic Instability , Humans , Male , Middle Aged , Pesticides/toxicity , Telomere/genetics
4.
Article in English | MEDLINE | ID: mdl-34798938

ABSTRACT

The past decades have shown that telomere crisis is highly affected by external factors. Effects of human exposure to xenobiotics on telomere length (TL), particularly in their workplace, have been largely studied. TL has been shown to be an efficient biomarker in occupational risk assessment. This is the first review focusing on studies about the effects on TL from occupational exposures to metals (lead [Pb] and mixtures), and particulate matter (PM) related to inorganic elements. Data from 15 studies were evaluated regarding occupational exposure to metals and PM-associated inorganic elements and impact on TL. Potential complementary analyses and subjects' background (age, length of employment and gender) were also assessed. There was limited information on the correlations between work length and TL dynamics, and that was also true for the correlation between age and TL. Results indicated that TL is affected differently across the types of occupational exposure investigated in this review, and even within the same exposure, a variety of effects can be observed. Fifty-three percent of the studies observed decreased TL in occupational exposure among welding fumes, open-cast coal mine, Pb and PM industries workers. Two studies focused particularly on the levels of metals and association with TL, and both linear and non-linear associations were found. Interestingly, TL modifications were accompanied by increase in DNA damage in 7 out of 8 studies that investigated it, measured either by Cytokinesis-block Micronucleus Assay or Comet assay. Five studies also investigated oxidative stress parameters, and 4 of them found increased levels of oxidative damage along with TL impairment. Oxidative stress is one of the main mechanisms by which telomeres are affected due to their high guanine content. Our review highlights the need of further studies accessing TL in simultaneous occupational exposure to mixtures of xenobiotics.


Subject(s)
Occupational Exposure , Telomere , Welding , Humans , Lead/toxicity , Occupational Exposure/adverse effects , Occupational Exposure/analysis , Particulate Matter , Telomere/genetics , Xenobiotics
6.
Ecotoxicol Environ Saf ; 206: 111397, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33007538

ABSTRACT

During the harvest period, tobacco workers are exposed to nicotine and it is known that absorption of the alkaloid via the leaves causes green tobacco sickness (GST). We investigated if GST and its symptoms are associated with DNA damage and alterations of the redox status. DNA damage was measured in lymphocytes of tobacco workers and controls (n = 40/group) in single cell gel electrophoresis assays. Exposure to nicotine was determined by plasma cotinine measurements, alterations of the redox status by quantification of the total antioxidant capacity (TEAC) and of thiobarbituric acid reactive substances (TBARS). The symptoms of GTS included nausea, abdominal cramps, headache, vomiting and dizziness, and 50% of the workers had more than one symptom. Cotinine levels were enhanced in the workers (111 ng/mL); furthermore, the extent of DNA damage was ca. 3-fold higher than in the controls. This effect was more pronounced in participants with GST compared to healthy nicotine exposed workers and increased in individuals with specific symptoms (range 22-36%). TBARS levels did not differ between workers and unexposed controls, while TEAC values were even increased (by 14.3%). Contact with nicotine present in tobacco leaves causes GTS and leads to damage of the DNA; this effect is more pronounced in workers with GTS symptoms and is associated with alterations of the redox status. Damage of the genetic material which was found in the workers may lead to adverse long-term effects that are caused by genomic instability such as cancer and accelerated ageing.


Subject(s)
Agricultural Workers' Diseases/chemically induced , DNA Damage , Farmers , Nicotiana/growth & development , Nicotine/toxicity , Occupational Exposure/adverse effects , Oxidative Stress/drug effects , Adult , Agricultural Workers' Diseases/genetics , Agricultural Workers' Diseases/metabolism , Brazil , Case-Control Studies , Cotinine/blood , Female , Genomic Instability/drug effects , Humans , Male , Nicotine/metabolism , Occupational Exposure/analysis , Oxidation-Reduction , Oxidative Stress/genetics , Thiobarbituric Acid Reactive Substances/analysis , Nicotiana/metabolism , Young Adult
7.
Front Cell Dev Biol ; 8: 493, 2020.
Article in English | MEDLINE | ID: mdl-32612998

ABSTRACT

Telomeres are repetitive regions of DNA bound by specialized proteins at the termini of linear chromosomes that prevent the natural chromosome ends from being recognized as DNA double strand breaks. Telomeric DNA is gradually eroded with each round of cell division, resulting in the accumulation of critically short or dysfunctional telomeres that eventually trigger cellular senescence. Consequently, telomere length is indicative of the proliferative capacity of a cell. Multiple methods exist to measure telomere length and telomere content, but a simple and reliable technique to accurately measure individual telomere lengths is currently lacking. We have developed the Telomere length Combing Assay (TCA) to measure telomere length on stretched DNA fibers. We used TCA to measure telomere erosion in primary human fibroblasts, and to detect telomere lengthening in response to activation of telomere maintenance pathways. TCA was also used to accurately measure telomere length in healthy individuals, and to identify critically short telomeres in patients with telomere biology disorders. TCA is performed on isolated DNA, negating the need for cycling cells. TCA is amenable to semi-automated image analysis, and can be fully automated using the Genomic Vision molecular combing platform. This not only precludes sampling bias, but also provides the potential for high-throughput applications and clinical development. TCA is a simple and versatile technique to measure the distribution of individual telomere lengths in a cell population, offering improved accuracy, and more detailed biological insight for telomere length measurement applications.

8.
Nat Commun ; 11(1): 435, 2020 01 23.
Article in English | MEDLINE | ID: mdl-31974348

ABSTRACT

Population health research is increasingly focused on the genetic determinants of healthy ageing, but there is no public resource of whole genome sequences and phenotype data from healthy elderly individuals. Here we describe the first release of the Medical Genome Reference Bank (MGRB), comprising whole genome sequence and phenotype of 2570 elderly Australians depleted for cancer, cardiovascular disease, and dementia. We analyse the MGRB for single-nucleotide, indel and structural variation in the nuclear and mitochondrial genomes. MGRB individuals have fewer disease-associated common and rare germline variants, relative to both cancer cases and the gnomAD and UK Biobank cohorts, consistent with risk depletion. Age-related somatic changes are correlated with grip strength in men, suggesting blood-derived whole genomes may also provide a biologic measure of age-related functional deterioration. The MGRB provides a broadly applicable reference cohort for clinical genetics and genomic association studies, and for understanding the genetics of healthy ageing.


Subject(s)
Databases, Genetic , Genetic Variation , Genome, Human , Aged , Aged, 80 and over , Cohort Studies , Female , Gene Frequency , Genetic Predisposition to Disease , Healthy Volunteers , Humans , Male , Middle Aged , Mitochondria/genetics , Neoplasms/genetics , Physical Functional Performance , Polymorphism, Single Nucleotide , Whole Genome Sequencing
9.
Nutrition ; 71: 110645, 2020 03.
Article in English | MEDLINE | ID: mdl-31896063

ABSTRACT

OBJECTIVES: Lifestyle, obesity, and eating habits are emerging as determinants for the instability of telomeres. The increase in childhood and adolescent obesity and the association of biochemical profiles and dietary components with telomere length (TL) makes it an important issue in nutritional research. The aim of the present study was to investigate TL and its association with ethnic background, adiposity, clinical and biochemical parameters, and dietary patterns among Brazilian children and adolescents. METHODS: A cross-sectional study encompassing 981 children and adolescents between 7 and 17 y of age was performed. Dietary intake habits, anthropometry, and clinical data were collected. TL analysis was performed by quantitative polymerase chain reaction. RESULTS: Children presented significantly longer TL than adolescents (P = 0.046). Participants who self-declared as black, mulatto, or brown (P < 0.001) also showed longer TL than those who were white. Regarding biochemical parameters, individuals with altered glucose levels had shorter TL than normoglycemic participants in the total sample (P = 0.014). Such difference remained statistically significant in adolescents (P = 0.019). Participants who reported eating fruits and vegetables regularly had longer TL than those who did not (P < 0.001). CONCLUSION: The results suggested that both biochemical parameters and the intake of antioxidant-rich food, such as fruits and vegetables, are associated with the stability of telomere biology among young Brazilians.


Subject(s)
Ethnicity/genetics , Feeding Behavior/physiology , Pediatric Obesity/ethnology , Pediatric Obesity/genetics , Telomere Homeostasis/genetics , Adiposity/genetics , Adolescent , Anthropometry , Brazil , Child , Cross-Sectional Studies , Diet/adverse effects , Feeding Behavior/ethnology , Female , Humans , Male , Telomere
10.
Ecotoxicol Environ Saf ; 189: 109975, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31787382

ABSTRACT

Coal plants represent one of the main sources of environmental pollution due to the combustion process of this mineral and the consequent release of gases and particles which, in significant quantities, can lead to a potential risk to health and the environment. The susceptibility of individuals to the genotoxic effects of coal mining can be modulated by genetic variations in the xenobiotic detoxification and DNA repair processes. The aim of this study was to evaluate if xenobiotic metabolism polymorphism, base excision repair polymorphisms and non-homologous end joining repair polymorphism, could modify individual susceptibility to genomic instability and epigenetic alterations induced in workers by occupational exposure to coal. In this study, polymerase chain reaction was used to examine the polymorphic sites. The sample population comprising 70 coal mine workers and 71 workers non-exposed to coal. Our results demonstrated the effect of individual genotypes on different biomarkers evaluated. Significant decrease in % of global DNA methylation were observed in CYP1A1 Val/- exposed individuals compared to CYP1A1 Ile/Ile individuals. Coal workers who carried the XRCC4 Ile/Ile genotype showed decrease NBUD frequencies, while the XRCC4 Thr/- genotype was associated with decrease in Buccal micronucleus cells for the group not exposed. No influence of GSTM1 null, GSTT1 null, GSTP1 Ile105Val, hOGG1 Ser326Cys, XRCC1 Arg194Trp polymorphisms was observed. Thus, the current study reinforces the importance of considering the effect of metabolizing and repair variant genotypes on the individual susceptibility to incorporate DNA damage, as these processes act in a coordinated manner to determine the final response to coal exposure.


Subject(s)
Coal Mining , Coal/toxicity , DNA Damage , DNA Methylation , Occupational Exposure , Polymorphism, Genetic , Telomere Homeostasis , Adolescent , Adult , Aged , Cytochrome P-450 CYP1A1/genetics , DNA Repair , DNA-Binding Proteins/genetics , Female , Genotype , Glutathione S-Transferase pi/genetics , Glutathione Transferase/genetics , Humans , Male , Middle Aged , X-ray Repair Cross Complementing Protein 1/genetics , Xenobiotics/metabolism , Young Adult
11.
Mutat Res Genet Toxicol Environ Mutagen ; 836(Pt B): 36-41, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30442342

ABSTRACT

Coal is a mixture of several chemicals, mainly inorganic elements and polycyclic aromatic hydrocarbons, many of which have mutagenic and carcinogenic effects. Pneumoconiosis, fibrosis, asbestosis, silicosis, emphysema, loss of lung function and cancer are some examples of coal-related disorders. The aim of this study was to analyze coal miners with respect to telomere length (TL) and percentage (%) of global DNA methylation. The study involved 82 participants divided into two groups: 55 workers exposed to coal and 27 non-exposed individuals. DNA was isolated from peripheral blood samples from all individuals. Telomeres were measured by quantitative real time polymerase chain reaction (qPCR) and global DNA methylation levels were performed by the relative quantitation of 5-methyl-2'-deoxycytidine (5-mdC) by high-performance liquid chromatography (HPLC). TL measurements showed a mean of 9,199 bp (±4,196) for non-exposed and 7,545 bp (±2,703) for exposed groups, and% of global DNA methylation a mean of 2.78% (±0.41) for non-exposed and 3.00% (±0.37) for exposed individuals. Occupationally exposed individuals showed a significant decrease of TL (P < 0.05; Mann-Whitney test) and increase in the percentage of global DNA methylation (P < 0.05; Mann-Whitney test) when compared to the non-exposed group. This study showed that occupational exposure to coal and products of combustion is positively associated with TL and DNA methylation. Previously, we have evaluated the same individuals using comet assay, micronucleus (MN) test, oxidative stress and inorganic elements. No correlations were observed between TL and methylation with previous data in the exposed group. Further studies are needed to determine whether these alterations are associated with induced disease outcomes and if these events could be determinants to identify cancer risk.


Subject(s)
Coal Mining , Comet Assay/methods , DNA Damage , DNA Methylation , Environmental Monitoring/methods , Occupational Exposure/analysis , Telomere Homeostasis , Adult , Aged , Case-Control Studies , Cells, Cultured , Female , Humans , Lymphocytes/drug effects , Lymphocytes/metabolism , Lymphocytes/pathology , Male , Middle Aged , Occupational Exposure/adverse effects , Oxidative Stress , Young Adult
12.
Mutat Res Genet Toxicol Environ Mutagen ; 836(Pt B): 9-18, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30442351

ABSTRACT

Pesticides are one of the most frequently investigated chemical, due to their multiple uses in agricultural and public health areas. This study evaluates lymphocytes CBMN (cytokinesis-block micronucleus cytome assay), inflammatory markers, inorganic elements in blood samples, and the relationship of these parameters with XRCC1Arg194Trp, OGG1Ser326Cys and PON1Gln192Arg polymorphisms in a population of tobacco farmers. The study population comprised 129 agricultural workers exposed to pesticides and 91 nonexposed. Farmers had significantly increased NPB (nuclear plasmatic bridge), MN (micronucleus) and NBUD (nuclear bud) frequencies, as well as IL-6 (interleukin 6) and TNF-α (tumor necrosis factor alpha) serum levels, and decreased cytokines CD4+/CD8+ ratio. In the exposed group, XRCC1 Trp/- was correlated with decreased NDI (nuclear division index), and OGG1 Cys/- was associated with higher levels of NPB and decreased levels of IL-6. The combined effects of PON1 Arg/- and XRCC1 Arg/Arg were associated with increased NPB frequencies. In addition, the combination of PON1 Arg/- with XRCC1 Trp/- or OGG1 Cys/- influenced in increased levels of necrosis in farmers. Furthermore, tobacco farmers showed a positive correlation between TNF-α levels and NPB, CD4+/CD8+ ratio and NBUD; and IL-6 levels with both MN and NDI. The duration of years of work at tobacco fields was correlated positively with NBUD frequency. Sulfur, chlorine and potassium were found at increased levels in the exposed group when compared to the nonexposed one. These findings provide evidence that tobacco farmers' exposure have increased DNA damage and alter the immune system's response, and that XRCC1 and OGG1 polymorphisms could influence both biomarkers results.


Subject(s)
Aryldialkylphosphatase/genetics , DNA Damage , DNA Glycosylases/genetics , Inflammation Mediators/blood , Nicotiana/adverse effects , Polymorphism, Genetic , X-ray Repair Cross Complementing Protein 1/genetics , Adult , Case-Control Studies , Farmers/statistics & numerical data , Female , Humans , Interleukin-6/blood , Lymphocytes/drug effects , Lymphocytes/metabolism , Lymphocytes/pathology , Male , Occupational Exposure/adverse effects , Occupational Exposure/analysis , Tumor Necrosis Factor-alpha/blood
13.
Oxid Med Cell Longev ; 2018: 7017423, 2018.
Article in English | MEDLINE | ID: mdl-29967663

ABSTRACT

Pesticides used at tobacco fields are associated with genomic instability, which is proposed to be sensitive to nutritional intake and may also induce epigenetic changes. We evaluated the effect of dietary intake and genetic susceptibility polymorphisms in MTHFR (rs1801133) and TERT (rs2736100) genes on genomic and epigenetic instability in tobacco farmers. Farmers, when compared to a nonexposed group, showed increased levels of different parameters of DNA damage (micronuclei, nucleoplasmic bridges, and nuclear buds), evaluated by cytokinesis-block micronucleus cytome assay. Telomere length (TL) measured by quantitative PCR was shorter in exposed individuals. Global DNA methylation was significantly decreased in tobacco farmers. The exposed group had lower dietary intake of fiber, but an increase in cholesterol; vitamins such as B6, B12, and C; ß-carotene; and α-retinol. Several trace and ultratrace elements were found higher in farmers than in nonfarmers. The MTHFR CT/TT genotype influenced nucleoplasmic bridges, nuclear buds, and TL in the exposed group, whereas TERT GT/TT only affected micronucleus frequency. We observed a positive correlation of TL and lipids and an inverse correlation of TL and fibers. The present data suggest an important role of dietary intake and subjects' genetic susceptibility to xenobiotics-induced damages and epigenetic alterations in tobacco farmers occupationally exposed to mixtures of pesticides.


Subject(s)
Diet , Genetic Predisposition to Disease/genetics , Genomic Instability/drug effects , Occupational Exposure/adverse effects , Pesticides/adverse effects , Adult , Brazil , DNA Damage/drug effects , DNA Damage/genetics , Farmers , Female , Genomic Instability/genetics , Genotype , Humans , Male , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Middle Aged , Polymorphism, Single Nucleotide , Telomerase/genetics , Telomere Shortening/drug effects , Nicotiana
14.
Ecotoxicol Environ Saf ; 159: 164-171, 2018 Sep 15.
Article in English | MEDLINE | ID: mdl-29747151

ABSTRACT

Tobacco farming has been proving to induce poor health outcomes in agricultural workers, genomic instability being the triggering one. This study evaluated influence of PON1 (paraoxonase 1), SOD2 (superoxide dismutase), OGG1 (8-oxoguanine glycosylase), XRCC1 (X-ray repair cross-complementing protein 1), and XRCC4 (X-ray repair cross-complementing protein 4) genes polymorphisms on DNA damage in 121 subjects occupationally exposed to pesticides mixtures and nicotine at tobacco fields and 121 non-exposed individuals. Inorganic elements (Cl, P, S and Zn) and cotinine levels were found increased in farmers, confirming exposure. Results show higher frequencies of buccal micronucleus (MN), nuclear buds (NBUD), binucleated cells (BN) and damage index (comet assay), reduced telomere length (TL), and increased parameters of oxidative stress in farmers compared to non-exposed individuals. PON1 Gln/Gln genotype was associated with increased MN frequency. SOD2 Val/Val showed association with increased frequency of MN and NBUD and decreased antioxidant activity. The XRCC1 Arg/Arg showed protective effect for MN, BN and TL, which was also positively influenced by OGG1 -/Cys. MN was decreased in XRCC4 -/Ile farmers. These genotypes also showed a risk for antioxidant activity. Our study proposes that PON1 and SOD2 variants play a role in xenobiotic-metabolizing system in farmers, while base excision repair (BER) pathway could be the repair mechanism involved in genomic instability suffered by tobacco farmers.


Subject(s)
Aryldialkylphosphatase/genetics , DNA Damage , DNA Glycosylases/genetics , DNA-Binding Proteins/genetics , Pesticides/toxicity , Superoxide Dismutase/genetics , X-ray Repair Cross Complementing Protein 1/genetics , Adult , Comet Assay , Farmers , Female , Genotype , Humans , Male , Micronucleus Tests , Middle Aged , Occupational Exposure/adverse effects , Polymorphism, Genetic , Nicotiana
15.
Mutagenesis ; 33(2): 119-128, 2018 04 13.
Article in English | MEDLINE | ID: mdl-29669110

ABSTRACT

Tobacco farming is an important economic income in Brazil, although it has been challenged as regard the occupational exposure to both pesticides and nicotine endured by farmers. Chronic occupational exposure to complex mixtures can lead to health hazardous. We examined genomic instability and epigenetic changes in tobacco farmers occupationally exposed to pesticide mixtures and nicotine at tobacco fields. DNA damage was assessed by alkaline comet assay in blood cells. Genomic DNA was isolated, and telomere length was measured using quantitative polymerase chain reaction assay. We measured 5-methyl-2'-deoxycytidine, a marker of global DNA methylation, and p16 promoter methylation. The oxidative profile was evaluated by trolox equivalent antioxidant capacity and lipid peroxidation (thiobarbituric acid reactive substances) in serum. Exposure parameters, plasma cotinine and inorganic element levels, were also measured. DNA damage was significantly elevated for farmers in relation to unexposed group (P < 0.001; Mann-Whitney test) and positively associated with years of exposure. Inverse relationship between DNA damage and total equivalent antioxidant activity was demonstrated for exposed and unexposed groups. Exposed group showed significantly shorter telomeres (P < 0.001; unpaired t-test) and DNA hypomethylation (P < 0.001; unpaired t-test), as well as p16 hypermethylation (P = 0.003; Mann-Whitney test). Lipid peroxidation was increased for exposed group in relation to unexposed one (P = 0.02; Mann-Whitney test) and presented a positive correlation with global DNA methylation (P = 0.0264). Farmers have increased plasma cotinine levels (P < 0.001) and inorganic elements (phosphorus, sulphur and chlorine) in relation to unexposed group. Elevated oxidative stress levels due to chronic occupational pesticide mixtures and nicotine exposure in tobacco farmers were associated with higher DNA damage, shorter telomeres and altered DNA methylation. Telomere-accelerated attrition due to exposure may be potential intermediate step before a disease state.


Subject(s)
DNA Damage/drug effects , DNA Methylation/drug effects , Genomic Instability/drug effects , Telomere Shortening/drug effects , Adult , Aged , Brazil , Comet Assay , DNA Methylation/genetics , Farmers , Female , Humans , Lipid Peroxidation/drug effects , Male , Middle Aged , Occupational Exposure , Oxidative Stress/drug effects , Pesticides/toxicity , Telomere/drug effects , Telomere/genetics , Telomere Shortening/genetics , Nicotiana/toxicity
16.
Int J Occup Environ Health ; 23(4): 311-318, 2017 10.
Article in English | MEDLINE | ID: mdl-30052162

ABSTRACT

BACKGROUND: Genetic damage may occur spontaneously under normal metabolic circumstances, inadequate intake of nutrients, and excessive exposure to environmental mutagens. OBJECTIVES: To evaluate the influence of the intake of micronutrients vitamin B12, vitamin B6, and folate and of the polymorphism methylenetetrahydrofolate reductase (MTHFR) C677T on the induction of DNA damage in tobacco farmers. METHODS: The study involved 66 men and 44 women engaged in tobacco cultivation in the region of Venâncio Aires (Rio Grande do Sul state, Brazil). Peripheral blood samples were collected to analyze DNA damage using the Comet assay, the micronucleus (MN) test and MTHFR C677T polymorphism. Dietary intake was evaluated based on the mean values obtained from three 24-h diet recall questionnaires, and nutrient intake data were computerized and estimated in the Food Processor SQL 10.9 program. The statistical tests used to generate the stated results were Kruskal-Wallis test, Exact Fisher's test, and multivariate linear regression analysis. RESULTS: DNA damage was significantly higher in individuals who had an inadequate intake of folate, vitamin B12, and vitamin B6 (P < 0.01) assessed by Comet assay. In relation to MN test results, buccal cells showed MN frequency higher in individuals with inadequate intake of vitamin B6 (P < 0.01). No difference was observed in MN lymphocytes frequency. No significant association was detected between MTHFR C677T polymorphism and DNA damage in tobacco farmers. CONCLUSION: Our results suggest that folate, vitamin B12, and vitamin B6 deficiency may be associated with genotoxic effect in individuals exposed to pesticides.


Subject(s)
DNA Damage , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Micronutrients/metabolism , Occupational Exposure , Polymorphism, Genetic , Vitamin B Complex/metabolism , Adult , Brazil , Farmers/statistics & numerical data , Female , Folic Acid/metabolism , Humans , Male , Methylenetetrahydrofolate Reductase (NADPH2)/metabolism , Middle Aged , Pesticides/analysis , Nicotiana , Vitamin B 12/metabolism , Vitamin B 6/metabolism
17.
Mutat Res ; 791-792: 19-26, 2016.
Article in English | MEDLINE | ID: mdl-27566293

ABSTRACT

Various pesticides in the form of mixtures must be used to keep tobacco crops pest-free. Recent studies have shown a link between occupational exposure to pesticides in tobacco crops and increased damage to the DNA, mononuclei, nuclear buds and binucleated cells in buccal cells as well as micronuclei in lymphocytes. Furthermore, pesticides used specifically for tobacco crops shorten telomere length (TL) significantly. However, the molecular mechanism of pesticide action on telomere length is not fully understood. Our study evaluated the interaction between a complex mixture of chemical compounds (tobacco cultivation pesticides plus nicotine) and proteins associated with maintaining TL, as well as the biological processes involved in this exposure by System Biology tools to provide insight regarding the influence of pesticide exposure on TL maintenance in tobacco farmers. Our analysis showed that one cluster was associated with TL proteins that act in bioprocesses such as (i) telomere maintenance via telomere lengthening; (ii) senescence; (iii) age-dependent telomere shortening; (iv) DNA repair (v) cellular response to stress and (vi) regulation of proteasome ubiquitin-dependent protein catabolic process. We also describe how pesticides and nicotine regulate telomere length. In addition, pesticides inhibit the ubiquitin proteasome system (UPS) and consequently increase proteins of the shelterin complex, avoiding the access of telomerase in telomere and, nicotine activates UPS mechanisms and promotes the degradation of human telomerase reverse transcriptase (hTERT), decreasing telomerase activity.


Subject(s)
DNA-Binding Proteins/metabolism , Farmers , Nicotine/toxicity , Occupational Exposure/adverse effects , Pesticides/toxicity , Protein Interaction Maps , Telomere Shortening/drug effects , Brazil , Humans , Systems Biology , Telomere/drug effects , Telomere/metabolism , Nicotiana/adverse effects , Nicotiana/chemistry , Nicotiana/growth & development
18.
Genet Mol Biol ; 39(1): 122-8, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27007905

ABSTRACT

Metal ions such as iron can induce DNA damage by inducing reactive oxygen species (ROS) and oxidative stress. Vitamin C is one of the most widely consumed antioxidants worldwide, present in many fruits and vegetables, especially inMalpighia glabra L., popularly known as acerola, native to Brazil. Acerola is considered a functional fruit due to its high antioxidant properties and phenolic contents, and therefore is consumed to prevent diseases or as adjuvant in treatment strategies. Here, the influence of ripe and unripe acerola juices on iron genotoxicity was analyzed in vivo using the comet assay and micronucleus test. The comet assay results showed that acerola juice exerted no genotoxic or antigenotoxic activity. Neither ripe nor unripe acerola juices were mutagenic to animals treated with juices, in micronucleus test. However, when compared to iron group, the pre-treatment with acerola juices exerted antimutagenic activity, decreasing significantly micronucleus mean values in bone marrow. Stage of ripeness did not influence the interaction of acerola compounds with DNA, and both ripe and unripe acerola juices exerted protective effect over DNA damage generated by iron.

19.
Environ Mol Mutagen ; 57(1): 74-84, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26426910

ABSTRACT

Occupational exposure to pesticides in tobacco fields causes genetic damage in farmers. The aim of this study was to analyze tobacco farmers chronically exposed to low doses of pesticides and nicotine (present in the tobacco leaves) in relation to absolute telomere length (aTL), and explore the influence of lifestyle characteristics, oxidative stress, and inorganic element levels. DNA was isolated from peripheral blood samples from agricultural workers and non-exposed individuals, and aTL was measured by quantitative real time polymerase chain reaction (qPCR) analysis. Oxidative stress (thiobarbituric acid reactive substances [TBARS], which measures oxidative damage to lipids; and toxic equivalent antioxidant capacity [TEAC], which measures total equivalent antioxidant capacity) was evaluated in serum, and inorganic element content was analyzed in whole blood through particle-induced X-ray emission technique. It was found that exposure to pesticides and tobacco smoking had significant effects on aTL. Individuals occupationally exposed to complex mixtures of pesticides in tobacco fields and individuals who smoked had decreased aTL compared with the non-exposed group. TBARS and TEAC were significantly elevated in the exposed group. There were no significant differences in inorganic elements. There was no evidence of an influence of age, gender, consumption of alcoholic beverages, or intake of fruits and vegetables on aTL within the groups. In addition, years of work in the tobacco field in the exposed group did not influence any of the variables analyzed. Although further studies were needed, these results suggested differences in telomere maintenance in tobacco farmers compared with the control group, indicating that telomere length may be a good biomarker of occupational exposure.


Subject(s)
Nicotiana/adverse effects , Occupational Exposure/adverse effects , Pesticides/toxicity , Smoking/adverse effects , Telomere/drug effects , Adolescent , Adult , Aged , Brazil , Case-Control Studies , DNA Damage , Female , Humans , Life Style , Male , Middle Aged , Public Health Surveillance , Risk Factors , Telomere Homeostasis/drug effects , Young Adult
20.
J Toxicol Environ Health A ; 76(19): 1121-8, 2013.
Article in English | MEDLINE | ID: mdl-24274153

ABSTRACT

The abusive use of amfepramone in Brazilian population has grown in recent years. Few studies have been conducted on amphetamine with respect to DNA damage, and there have been no apparent investigations examining the influence of amfepramone on humans. The aim of this study was to determine the possible mutagenic actions of amfepramone on humans using the micronucleus (MN) assay with buccal cells and the effects of supplementation with vitamin C as a potential protective agent. The study included 108 females with 52 as control and 56 taking amfepramone at 120 mg/d for at least the whole previous month. All women were intentionally selected to be nonsmokers and nondrinkers. After 30 d of amfepramone women were given amfepramone plus vitamin C use at 1000 mg/d for another month. Results showed a marked increase in the number of MN in amfepramone users in both basal and differentiated cells, indicating a mutagenic action. After vitamin C supplementation, a significant decrease in the frequency of MN and apoptosis was observed. Evidence indicates that the main mechanism of action of amfepramone in inducing DNA damage occurs through formation of reactive oxygen species (ROS), intercalation and topoisomerase binding, attributed to the presence of an N-dialkyl group. In addition, data demonstrated that vitamin C effectively inhibited amfepramone-induced DNA damage.


Subject(s)
Ascorbic Acid/pharmacology , Dietary Supplements , Diethylpropion/toxicity , Micronucleus Tests/methods , Mutagens/toxicity , Brazil , DNA Damage/drug effects , Female , Humans , Mouth Mucosa/cytology , Mouth Mucosa/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...