Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Commun (Camb) ; 52(8): 1602-5, 2016 Jan 28.
Article in English | MEDLINE | ID: mdl-26659404

ABSTRACT

The syntheses, as well as the photophysical and electrochemical characterization, of two novel BODIPY-porphyrin dyads and their first application in lighting schemes are provided. The benefits ascribed to their unique features, namely (i) a good electronic alignment, (ii) a remarkable efficient energy transfer, and (iii) excellent film morphology, lead to deep-red lighting devices with stabilities of around 1000 h and efficiencies of 0.13 Lm W(-1).

2.
Chem Commun (Camb) ; 51(9): 1631-4, 2015 Jan 31.
Article in English | MEDLINE | ID: mdl-25504216

ABSTRACT

We use free-standing TiO2 nanotube membranes that are transferred onto FTO slides in front-side illuminated dye-sensitized solar cells (DSSCs). We investigate the key parameters for solar cell arrangement of self-ordered anodic TiO2 nanotube layers on the FTO substrate, namely the influence of the annealing procedure on the DSSC light conversion efficiency. The results show that using an optimal temperature annealing profile can significantly enhance the DSSC efficiency (in our case η = 9.8%), as it leads to a markedly lower density of trapping states in the tube oxide, and thus to strongly improved electron transport properties.

3.
Br J Pharmacol ; 165(7): 2304-13, 2012 Apr.
Article in English | MEDLINE | ID: mdl-21955369

ABSTRACT

BACKGROUND AND PURPOSE: The potency of many 5-lipoxygenase (5-LOX) inhibitors depends on the cellular peroxide tone and the mechanism of 5-LOX enzyme activation. Therefore, new inhibitors that act regardless of the mode of enzyme activation need to be developed. Recently, we identified a novel class of thiazolinone-based compounds as potent 5-LOX inhibitors. Here, we present the molecular pharmacological profile of (Z)-5-(4-methoxybenzylidene)-2-(p-tolyl)-5H-thiazol-4-one, compound C06. EXPERIMENTAL APPROACH: Inhibition of 5-LOX product formation was determined in intact cells [polymorphonuclear leukocytes (PMNL), rat basophilic leukaemia-1, RAW264.7] and in cell-free assays [homogenates, 100, 000×g supernatant (S100), partially purified 5-LOX] applying different stimuli for 5-LOX activation. Inhibition of peroxisome proliferator-activated receptor (PPAR), cytosolic phospholipase A(2) (cPLA(2) ), 12-LOX, 15-LOX-1 and 15-LOX-2 as well as cyclooxygenase-2 (COX-2) were measured in vitro. KEY RESULTS: C06 induced non-cytotoxic, direct 5-LOX inhibition with IC(50) values about 0.66 µM (intact PMNL, PMNL homogenates) and approximately 0.3 µM (cell-free PMNL S100, partially purified 5-LOX). Action of C06 was independent of the stimulus used for 5-LOX activation and cellular redox tone and was selective for 5-LOX compared with other arachidonic acid binding proteins (PPAR, cPLA(2) , 12-LOX, 15-LOX-1, 15-LOX-2, COX-2). Experimental results suggest an allosteric binding distinct from the active site and the C2-like domain of 5-LOX. CONCLUSIONS AND IMPLICATIONS: C06 was identified as a potent selective direct 5-LOX inhibitor exhibiting a novel and unique mode of action, different from other established 5-LOX inhibitors. This thiazolinone may possess potential for intervention with inflammatory and allergic diseases and certain types of cancer.


Subject(s)
Lipoxygenase Inhibitors/pharmacology , Thiazoles/pharmacology , Allosteric Site , Animals , Arachidonate 5-Lipoxygenase/chemistry , Arachidonate 5-Lipoxygenase/metabolism , Cell-Free System , Humans , In Vitro Techniques , Lipoxygenase Inhibitors/chemistry , MAP Kinase Signaling System/drug effects , Neutrophils/drug effects , Neutrophils/metabolism , Oxidation-Reduction , Rats , Thiazoles/chemistry , U937 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...