Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
J Mol Struct ; 12852023 Aug 05.
Article in English | MEDLINE | ID: mdl-37234266

ABSTRACT

Structurally diverse indole-3-pyrazole-5-carboxamide analogues (10-29) were designed, synthesized, and evaluated for their antiproliferative activity against three cancer cell lines (Huh7, MCF-7, and HCT116) using the sulforhodamine B assay. Some of the derivatives showed anticancer activities equal to or better than sorafenib against cancer cell lines. Compounds 18 showed potent activity against the hepatocellular cancer (HCC) cell lines, with IC50 values in the range 0.6-2.9 µM. Compound 18 also exhibited moderate inhibitory activity against tubulin polymerization (IC50 = 19 µM). Flow cytometric analysis of cultured cells treated with 18 also demonstrated that the compound caused cell cycle arrest at the G2/M phase in both Huh7 and Mahlavu cells and induced apoptotic cell death in HCC cells. Docking simulations were performed to determine possible modes of interaction between 18 and the colchicine site of tubulin and quantum mechanical calculations were performed to observe the electronic nature of 18 and to support docking results.

2.
BMC Chem ; 17(1): 11, 2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36879343

ABSTRACT

BACKGROUND: Nonsteroidal anti-inflammatory drugs (NSAIDs) have been the most commonly used class of medications worldwide for the last three decades. OBJECTIVES: This study aimed to design and synthesize a novel series of methoxyphenyl thiazole carboxamide derivatives and evaluate their cyclooxygenase (COX) suppressant and cytotoxic properties. METHODS: The synthesized compounds were characterized using 1H, 13C-NMR, IR, and HRMS spectrum analysis and were evaluated for their selectivity towards COX-1 and COX-2 using an in vitro COX inhibition assay kit. Besides, their cytotoxicity was evaluated using the Sulforhodamine B (SRB) assay. Moreover, molecular docking studies were conducted to identify the possible binding patterns of these compounds within both COX-1 and COX-2 isozymes, utilizing human X-ray crystal structures. The density functional theory (DFT) analysis was used to evaluate compound chemical reactivity, which was determined by calculating the frontier orbital energy of both HOMO and LUMO orbitals, as well as the HOMO-LUMO energy gap. Finally, the QiKProp module was used for ADME-T analysis. RESULTS: The results revealed that all synthesized molecules have potent inhibitory activities against COX enzymes. The percentage of inhibitory activities at 5 µM concentration against the COX2 enzyme was in the range of 53.9-81.5%, while the percentage against the COX-1 enzyme was 14.7-74.8%. That means almost all of our compounds have selective inhibition activities against the COX-2 enzyme, and the most selective compound was 2f, with selectivity ratio (SR) value of 3.67 at 5 µM concentration, which has a bulky group of trimethoxy on the phenyl ring that could not bind well with the COX-1 enzyme. Compound 2h was the most potent, with an inhibitory activity percentage at 5 µM concentration of 81.5 and 58.2% against COX-2 and COX-1, respectively. The cytotoxicity of these compounds was evaluated against three cancer cell lines: Huh7, MCF-7, and HCT116, and negligible or very weak activities were observed for all of these compounds except compound 2f, which showed moderate activities with IC50 values of 17.47 and 14.57 µM against Huh7 and HCT116 cancer cell lines, respectively. Analysis of the molecular docking suggests 2d, 2e, 2f, and 2i molecules were bound to COX-2 isozyme favorably over COX-1 enzyme, and their interaction behaviors within COX-1 and COX-2 isozymes were comparable to celecoxib, as an ideal selective COX-2 drug, which explained their high potency and COX-2 selectivity. The molecular docking scores and expected affinity using the MM-GBSA approach were consistent with the recorded biological activity. The calculated global reactivity descriptors, such as HOMO and LUMO energies and the HOMO-LUMO gaps, confirmed the key structural features required to achieve favorable binding interactions and thus improve affinity. The in silico ADME-T studies asserted the druggability of molecules and have the potential to become lead molecules in the drug discovery process. CONCLUSION: In general, the series of the synthesized compounds had a strong effect on both enzymes (COX-1 and COX-2) and the trimethoxy compound 2f was more selective than the other compounds.

3.
Sci Rep ; 12(1): 15139, 2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36071119

ABSTRACT

Hepatocellular carcinoma (HCC) is a highly heterogeneous cancer, and resistant to both conventional and targeted chemotherapy. Recently, nonsteroidal anti-inflammatory drugs (NSAIDs) have been shown to decrease the incidence and mortality of different types of cancers. Here, we investigated the cellular bioactivities of a series of triazolothiadiazine derivatives on HCC, which have been previously reported as potent analgesic/anti-inflammatory compounds. From the initially tested 32 triazolothiadiazine NSAID derivatives, 3 compounds were selected based on their IC50 values for further molecular assays on 9 different HCC cell lines. 7b, which was the most potent compound, induced G2/M phase cell cycle arrest and apoptosis in HCC cells. Cell death was due to oxidative stress-induced JNK protein activation, which involved the dynamic involvement of ASK1, MKK7, and c-Jun proteins. Moreover, 7b treated nude mice had a significantly decreased tumor volume and prolonged disease-free survival. 7b also inhibited the migration of HCC cells and enrichment of liver cancer stem cells (LCSCs) alone or in combination with sorafenib. With its ability to act on proliferation, stemness and the migration of HCC cells, 7b can be considered for the therapeutics of HCC, which has an increased incidence rate of ~ 3% annually.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Apoptosis , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , MAP Kinase Signaling System , Mice , Mice, Nude , Oxidative Stress
4.
BMC Cancer ; 22(1): 320, 2022 Mar 24.
Article in English | MEDLINE | ID: mdl-35331184

ABSTRACT

BACKGROUND: Targeted therapies for Primary liver cancer (HCC) is limited to the multi-kinase inhibitors, and not fully effective due to the resistance to these agents because of the heterogeneous molecular nature of HCC developed during chronic liver disease stages and cirrhosis. Although combinatorial therapy can increase the efficiency of targeted therapies through synergistic activities, isoform specific effects of the inhibitors are usually ignored. This study concentrated on PI3K/Akt/mTOR pathway and the differential combinatory bioactivities of isoform specific PI3K-α inhibitor (PIK-75) or PI3K-ß inhibitor (TGX-221) with Sorafenib dependent on PTEN context. METHODS: The bioactivities of inhibitors on PTEN adequate Huh7 and deficient Mahlavu cells were investigated with real time cell growth, cell cycle and cell migration assays. Differentially expressed genes from RNA-Seq were identified by edgeR tool. Systems level network analysis of treatment specific pathways were performed with Prize Collecting Steiner Tree (PCST) on human interactome and enriched networks were visualized with Cytoscape platform. RESULTS: Our data from combinatory treatment of Sorafenib and PIK-75 and TGX-221 showed opposite effects; while PIK-75 displays synergistic effects on Huh7 cells leading to apoptotic cell death, Sorafenib with TGX-221 display antagonistic effects and significantly promotes cell growth in PTEN deficient Mahlavu cells. Signaling pathways were reconstructed and analyzed in-depth from RNA-Seq data to understand mechanism of differential synergistic or antagonistic effects of PI3K-α (PIK-75) and PI3K-ß (TGX-221) inhibitors with Sorafenib. PCST allowed as to identify AOX1 and AGER as targets in PI3K/Akt/mTOR pathway for this combinatory effect. The siRNA knockdown of AOX1 and AGER significantly reduced cell proliferation in HCC cells. CONCLUSIONS: Simultaneously constructed and analyzed differentially expressed cellular networks presented in this study, revealed distinct consequences of isoform specific PI3K inhibition in PTEN adequate and deficient liver cancer cells. We demonstrated the importance of context dependent and isoform specific PI3K/Akt/mTOR signaling inhibition in drug resistance during combination therapies. ( https://github.com/cansyl/Isoform-spesific-PI3K-inhibitor-analysis ).


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Drug Resistance , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Niacinamide/therapeutic use , Phenylurea Compounds/therapeutic use , Phosphatidylinositol 3-Kinases/metabolism , Protein Isoforms/genetics , Proto-Oncogene Proteins c-akt/metabolism
5.
J Clin Immunol ; 42(3): 582-596, 2022 04.
Article in English | MEDLINE | ID: mdl-35028801

ABSTRACT

NF-κB essential modulator (NEMO, IKK-γ) deficiency is a rare combined immunodeficiency caused by mutations in the IKBKG gene. Conventionally, patients are afflicted with life threatening recurrent microbial infections. Paradoxically, the spectrum of clinical manifestations includes severe inflammatory disorders. The mechanisms leading to autoinflammation in NEMO deficiency are currently unknown. Herein, we sought to investigate the underlying mechanisms of clinical autoinflammatory manifestations in a 12-years old male NEMO deficiency (EDA-ID, OMIM #300,291) patient by comparing the immune profile of the patient before and after hematopoietic stem cell transplantation (HSCT). Response to NF-kB activators were measured by cytokine ELISA. Neutrophil and low-density granulocyte (LDG) populations were analyzed by flow cytometry. Peripheral blood mononuclear cells (PBMC) transcriptome before and after HSCT and transcriptome of sorted normal-density neutrophils and LDGs were determined using the NanoString nCounter gene expression panels. ISG15 expression and protein ISGylation was based on Immunoblotting. Consistent with the immune deficiency, PBMCs of the patient were unresponsive to toll-like and T cell receptor-activators. Paradoxically, LDGs comprised 35% of patient PBMCs and elevated expression of genes such as MMP9, LTF, and LCN2 in the granulocytic lineage, high levels of IP-10 in the patient's plasma, spontaneous ISG15 expression and protein ISGylation indicative of a spontaneous type I interferon (IFN) signature were observed, all of which normalized after HSCT. Collectively, our results suggest that type I IFN signature observed in the patient, dysregulated LDGs and spontaneously activated neutrophils, potentially contribute to tissue damage in NEMO deficiency.


Subject(s)
Ectodermal Dysplasia , Neutrophils , Child , Ectodermal Dysplasia/genetics , Granulocytes/metabolism , Humans , I-kappa B Kinase/genetics , I-kappa B Kinase/metabolism , Leukocytes, Mononuclear/metabolism , Male
6.
BMC Chem ; 15(1): 66, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34930409

ABSTRACT

BACKGROUND: Liver cancer is predicted to be the sixth most diagnosed cancer globally and fourth leading cause of cancer deaths. In this study, a series of indole-3-isoxazole-5-carboxamide derivatives were designed, synthesized, and evaluated for their anticancer activities. The chemical structures of these of final compounds and intermediates were characterized by using IR, HRMS, 1H-NMR and 13C-NMR spectroscopy and element analysis. RESULTS: The cytotoxic activity was performed against Huh7, MCF7 and HCT116 cancer cell lines using sulforhodamine B assay. Some compounds showed potent anticancer activities and three of them were chosen for further evaluation on liver cancer cell lines based on SRB assay and real-time cell growth tracking analysis. Compounds were shown to cause arrest in the G0/G1 phase in Huh7 cells and caused a significant decrease in CDK4 levels. A good correlation was obtained between the theoretical predictions of bioavailability using Molinspiration calculation, Lipinski's rule of five, and experimental verification. These investigations reveal that indole-isoxazole hybrid system have the potential for the development of novel anticancer agents. CONCLUSIONS: This study has provided data that will form the basis of further studies that aim to optimize both the design and synthesis of novel compounds that have higher anticancer activities.

7.
J Gastrointest Cancer ; 52(4): 1266-1276, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34910274

ABSTRACT

PURPOSE: Computational approaches have been used at different stages of drug development with the purpose of decreasing the time and cost of conventional experimental procedures. Lately, techniques mainly developed and applied in the field of artificial intelligence (AI), have been transferred to different application domains such as biomedicine. METHODS: In this study, we conducted an investigative analysis via data-driven evaluation of potential hepatocellular carcinoma (HCC) therapeutics in the context of AI-assisted drug discovery/repurposing. First, we discussed basic concepts, computational approaches, databases, modeling approaches, and featurization techniques in drug discovery/repurposing. In the analysis part, we automatically integrated HCC-related biological entities such as genes/proteins, pathways, phenotypes, drugs/compounds, and other diseases with similar implications, and represented these heterogeneous relationships via a knowledge graph using the CROssBAR system. RESULTS: Following the system-level evaluation and selection of critical genes/proteins and pathways to target, our deep learning-based drug/compound-target protein interaction predictors DEEPScreen and MDeePred have been employed for predicting new bioactive drugs and compounds for these critical targets. Finally, we embedded ligands of selected HCC-associated proteins which had a significant enrichment with the CROssBAR system into a 2-D space to identify and repurpose small molecule inhibitors as potential drug candidates based on their molecular similarities to known HCC drugs. CONCLUSIONS: We expect that these series of data-driven analyses can be used as a roadmap to propose early-stage potential inhibitors (from database-scale sets of compounds) to both HCC and other complex diseases, which may subsequently be analyzed with more targeted in silico and experimental approaches.


Subject(s)
Antineoplastic Agents/pharmacology , Artificial Intelligence , Carcinoma, Hepatocellular/drug therapy , Drug Development/methods , Liver Neoplasms/drug therapy , Carcinoma, Hepatocellular/pathology , Computational Biology , Humans , Liver Neoplasms/pathology , Molecular Targeted Therapy
8.
Eur J Med Chem ; 221: 113489, 2021 Oct 05.
Article in English | MEDLINE | ID: mdl-33951549

ABSTRACT

In our effort for the development of novel anticancer therapeutics, a series of isoxazole-piperazine analogues were prepared, and primarily screened for their antiproliferative potential against hepatocellular carcinoma (HCC; Huh7/Mahlavu) and breast (MCF-7) cancer cells. All compounds demonstrated potent to moderate cytotoxicity on all cell lines with IC50 values in the range of 0.09-11.7 µM. Further biological studies with 6a and 13d in HCC cells have shown that both compounds induced G1 or G2/M arrests resulting in apoptotic cell death. Subsequent analysis of proteins involved in cell cycle progression as well as proliferation of HCC cells revealed that 6a and 13d may affect cellular survival pathways differently depending on the mutation profiles of cells (p53 and PTEN), epidermal/mesenchymal characteristics, and activation of cell mechanisms through p53 dependent/independent pathways. Lastly, we have demonstrated the potential anti-stemness properties of these compounds in which the proportion of liver CSCs in Huh7 cells (CD133+/EpCAM+) were significantly reduced by 6a and 13d. Furthermore, both compounds caused a significant reduction in expression of stemness markers, NANOG or OCT4 proteins, in Mahlavu and Huh7 cells, as well as resulted in a decreased sphere formation capacity in Huh7 cells. Together, these novel isoxazole-piperazine derivatives may possess potential as leads for development of effective anti-cancer drugs against HCC cells with stem cell-like properties.


Subject(s)
Antineoplastic Agents/pharmacology , Isoxazoles/pharmacology , Liver Neoplasms/drug therapy , Piperazine/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Isoxazoles/chemistry , Liver Neoplasms/pathology , Molecular Structure , Piperazine/chemistry , Structure-Activity Relationship , Tumor Cells, Cultured
9.
Turk J Biol ; 45(2): 149-161, 2021.
Article in English | MEDLINE | ID: mdl-33907497

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most common cancer types with high mortality rates and displays increased resistance to various stress conditions such as oxidative stress. Conventional therapies have low efficacies due to resistance and off-target effects in HCC. Here we aimed to analyze oxidative stress-related gene expression profiles of HCC cells and identify genes that could be crucial for novel diagnostic and therapeutic strategies. To identify important genes that cause resistance to reactive oxygen species (ROS), a model of oxidative stress upon selenium (Se) deficiency was utilized. The results of transcriptome-wide gene expression data were analyzed in which the differentially expressed genes (DEGs) were identified between HCC cell lines that are either resistant or sensitive to Se-deficiency-dependent oxidative stress. These DEGs were further investigated for their importance in oxidative stress resistance by network analysis methods, and 27 genes were defined to have key roles; 16 of which were previously shown to have impact on liver cancer patient survival. These genes might have Se-deficiency-dependent roles in hepatocarcinogenesis and could be further exploited for their potentials as novel targets for diagnostic and therapeutic approaches.

10.
Chem Biodivers ; 18(5): e2001037, 2021 May.
Article in English | MEDLINE | ID: mdl-33713038

ABSTRACT

Hepatocellular carcinoma (HCC) is the most prevalent primary liver cancer and one of the leading causes of cancer associated death worldwide. This is due to the highly resistant nature of this malignancy and the lack of effective treatment options for advanced stage HCC patients. The hyperactivity of PI3K/Akt and Ras/Raf/MEK/ERK signaling pathways contribute to the cancer progression, survival, motility, and resistance mechanisms, and the interaction of these two pathways are responsible for the regulation of cancer cell growth and development. Therefore, it is vital to design and develop novel therapeutic options for HCC treatment targeting these hyperactive pathways. For this purpose, novel series of trans-indole-3-ylacrylamide derivatives originated from the lead compound, 3-(1H-indole-3-yl)-N-(3,4,5-trimethoxyphenyl)acrylamide, have been synthesized and analyzed for their bioactivity on cancer cells along with the lead compound. Based on the initial screening, the most potent compounds were selected to elucidate their effects on cellular signaling activity of HCC cell lines. Cell cycle analysis, immunofluorescence, and Western blot analysis revealed that lead compound and (E)-N-(4-tert-butylphenyl)-3-(1H-indole-3-yl)acrylamide induced cell cycle arrest at the G2/M phase, enhanced chromatin condensation and PARP-cleavage, addressing induction of apoptotic cell death. Additionally, these compounds decreased the activity of ERK signaling pathway, where phosphorylated ERK1/2 and c-Jun protein levels diminished significantly. Relevant to these findings, the lead compound was able to inhibit tubulin polymerization as well. To conclude, the novel trans-indole-3-ylacrylamide derivatives inhibit one of the critical pathways associated with HCC which results in cell cycle arrest and apoptosis in HCC cell lines.


Subject(s)
Acrylamide/pharmacology , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Carcinoma, Hepatocellular/drug therapy , Liver Neoplasms/drug therapy , Acrylamide/chemical synthesis , Acrylamide/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Liver Neoplasms/pathology , Molecular Structure , Structure-Activity Relationship
11.
Sci Rep ; 10(1): 9943, 2020 Jun 16.
Article in English | MEDLINE | ID: mdl-32546710

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

12.
Sci Rep ; 10(1): 5971, 2020 04 06.
Article in English | MEDLINE | ID: mdl-32249801

ABSTRACT

Evidence suggests that the CXXC type zinc finger (ZF-CXXC) protein 5 (CXXC5) is a critical regulator/integrator of various signaling pathways that include the estrogen (E2)-estrogen receptor α (ERα). Due to its ZF-CXXC domain, CXXC5 is considered to be a member of the ZF-CXXC family, which binds to unmethylated CpG dinucleotides of DNA and through enzymatic activities for DNA methylation and/or chromatin modifications generates a chromatin state critical for gene expressions. Structural/functional features of CXXC5 remain largely unknown. CXXC5, suggested as transcription and/or epigenetic factor, participates in cellular proliferation, differentiation, and death. To explore the role of CXXC5 in E2-ERα mediated cellular events, we verified by generating a recombinant protein that CXXC5 is indeed an unmethylated CpG binder. We uncovered that CXXC5, although lacks a transcription activation/repression function, participates in E2-driven cellular proliferation by modulating the expression of distinct and mutual genes also regulated by E2. Furthermore, we found that the overexpression of CXXC5, which correlates with mRNA and protein levels of ERα, associates with poor prognosis in ER-positive breast cancer patients. Thus, CXXC5 as an unmethylated CpG binder contributes to E2-mediated gene expressions that result in the regulation of cellular proliferation and may contribute to ER-positive breast cancer progression.


Subject(s)
Cell Proliferation/physiology , DNA-Binding Proteins/metabolism , Estradiol/pharmacology , Estrogen Receptor alpha/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Transcription Factors/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Signal Transduction/drug effects
13.
Mol Cancer Ther ; 18(11): 2146-2157, 2019 11.
Article in English | MEDLINE | ID: mdl-31439713

ABSTRACT

Activation of the PI3K/Akt/mTOR pathway is an important signaling mechanism involved in the development and the progression of liver cancer stem cell (LCSC) population during acquired Sorafenib resistance in advanced hepatocellular carcinoma (HCC). Therefore, identification of novel therapeutic targets involving this pathway and acting on LCSCs is highly essential. Here, we analyzed the bioactivities and the molecular pathways involved in the action of small-molecule PI3K/Akt/mTOR pathway inhibitors in comparison with Sorafenib, DNA intercalators, and DAPT (CSC inhibitor) on CD133/EpCAM-positive LCSCs. Sorafenib and DNA intercalators lead to the enrichment of LCSCs, whereas Rapamycin and DAPT significantly reduced CD133/EpCAM positivity. Sequential treatment with Rapamycin followed by Sorafenib decreased the ratio of LCSCs as well as their sphere formation capacity, as opposed to Sorafenib alone. Under the stress of the inhibitors, differential expression analysis of 770 cancer pathway genes using network-based systems biology approach singled out IL8 expression association with LCSCs. Furthermore, IL8 secretion and LCSC enrichment ratio was also positively correlated. Following IL8 inhibition with its receptor inhibitor Reparixin or siRNA knockdown, LCSC features of HCC cells were repressed, and sensitivity of cells to Sorafenib increased significantly. Furthermore, inflammatory cytokines (IL8, IL1ß, and IL11) were also upregulated upon treatment with HCC-approved kinase inhibitors Sorafenib and Regorafenib. Hence, chemotherapeutic stress alters inflammatory cytokine gene expression in favor of hepatic CSC population survival. Autocrine IL8 signaling is identified as a critical event, and its inhibition provides a promising complimentary therapeutic approach for the prevention of LCSC population enrichment.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Hepatocellular/metabolism , Interleukin-8/genetics , Interleukin-8/metabolism , Liver Neoplasms/metabolism , Neoplastic Stem Cells/metabolism , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Cell Line, Tumor , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Neoplastic Stem Cells/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Sirolimus/pharmacology , Sorafenib/pharmacology , Sulfonamides/pharmacology , TOR Serine-Threonine Kinases/metabolism
14.
Comput Biol Chem ; 78: 227-241, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30579980

ABSTRACT

Thirty-two novel urea/thiourea compounds as potential kinase inhibitor were designed, synthesized and evaluated for their cytotoxic activity on breast (MCF7), colon (HCT116) and liver (Huh7) cancer cell lines. Compounds 10, 19 and 30 possessing anticancer activity with IC50 values of 0.9, 0.8 and 1.6µM respectively on Huh7 cells were selected for further studies. These hit compounds were tested against liver carcinoma panel. Real time cell electronic sensing assay was used to evaluate the effects of the compounds 10, 19 and 30 on the growth pattern of liver cancer cells. Apoptotic cell death and cell cycle analysis upon treatment of liver carcinoma cells with hit compounds were determined. A significant apoptotic cell death was detected upon treatment of Huh7 and Mahlavu cells with compound 30 after 48 h of treatment. Additionally, compound 10 caused cell cycle arrest at G0/G1 phase. Mutagenicity of hit compounds was evaluated. Assertively, these compounds were not found to be mutagenic on Salmonella typhimurium strains TA98 and TA100. To understand the binding modes of the synthesized compounds, molecular docking studies were performed using the crystal data of VEGFR and Src-kinase enzymes in correlation with anticancer activities.


Subject(s)
Antineoplastic Agents/pharmacology , Molecular Docking Simulation , Protein Kinase Inhibitors/pharmacology , Protein Kinases/metabolism , Pyrimidines/pharmacology , Urea/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , HCT116 Cells , Humans , MCF-7 Cells , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyrimidines/chemistry , Structure-Activity Relationship , Urea/chemistry
15.
Medchemcomm ; 9(5): 795-811, 2018 May 01.
Article in English | MEDLINE | ID: mdl-30108969

ABSTRACT

With the aim of achieving new compounds possessing both anti-inflammatory and antiplatelet activities, we synthesized (E)-3-[3-(pyridin-3/4-yl)-1-(phenyl/sulfonylmethylphenyl)-1H-pyrazol-4-yl]acrylamides, and evaluated their COX-1 and COX-2 inhibitory and antiplatelet activities. Since COX-2 inhibitory and antiplatelet compounds have anticancer potential, we also screened their antiproliferative effects against three human cancer cell lines. Compounds 5n, 5p, 5s, 10d, 10g and 10i were determined as dual COX-2 inhibitor/antiplatelet compounds. Compound 10h appeared to be a compound that exhibited antiplatelet activity without inhibiting the COX enzyme. Compounds 5h, 10a and 10i were the most effective derivatives which displayed antiproliferative activity against Huh7, MCF7 and HCT116 cells. Particularly, compound 10i, as the compound exhibiting the highest cytotoxic, antiplatelet and COX-2 inhibitory activity, was remarkable.

16.
Eur J Med Chem ; 129: 12-26, 2017 Mar 31.
Article in English | MEDLINE | ID: mdl-28219046

ABSTRACT

Despite having the second highest mortality associated with cancer, currently Sorafenib is the only FDA-approved chemotherapeutic agent available for liver cancer patients which can only improve survival for few months. In this study, various pyrazolic chalcone analogous compounds were synthesized and evaluated as potential chemotherapeutic agents for the treatment of hepatocellular carcinoma (HCC). Modifying the central pyrazole ring at the C(3)-position with different heteroaryl rings and substituting the C(4)-position of pyrazole with differently substituted chalcone moiety produced fouthy two variant compounds. For all these compounds, cytotoxicity was evaluated using sulforhodamine B assay and real time cell growth tracking, respectively. Based on 50% inhibitory concentration (IC50) values, compounds 39, 42, 49, and 52 were shown to exhibit potent cytotoxic activity against all the cancer cell lines tested, and had better cytotoxic activities than the well-known chemotherapeutic drug 5-FU. Therefore, these compounds were chosen to be further evaluated in a panel of HCC cell lines. Flow cytometric analysis of HCC cells treated with compounds 39, 42, 49, and 52 demonstrated that these compounds caused cell cycle arrest at G2/M phase followed by the apoptotic cell death and impaired cell growth as shown by real-time cell growth surveillance. Consistent with these results, western blotting of HCC cells treated with the compounds resulted in molecular changes for cell cycle proteins, where p21 levels were increased independent of p53 and the levels of the key initiators of mitosis Cyclin B1 and CDK1 were shown to decrease upon treatment. In conclusion, chalcone derivatives 42 and 52 show potent bioactivities by modulating the expression of cell-cycle related proteins and resulting in cell-cycle arrest in the HCC cell lines tested here, indicating that the compounds can be considered as preclinical candidates.


Subject(s)
Antineoplastic Agents/chemical synthesis , Carcinoma, Hepatocellular/drug therapy , Chalcone/pharmacology , Liver Neoplasms/drug therapy , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cell Cycle Proteins/drug effects , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Chalcone/chemical synthesis , Chalcone/therapeutic use , G2 Phase/drug effects , Humans , Pyrazoles/chemical synthesis , Pyrazoles/pharmacology , Pyrazoles/therapeutic use , Structure-Activity Relationship
17.
Medchemcomm ; 8(1): 81-87, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-30108693

ABSTRACT

Bioactivities of quinoides 1-5 and VEGFR2 TKIs 6-10 in hepatocellular cancer (HCC) and cancer stem cells (HCSCs) were studied. The compounds exhibited IC50 values in µM concentrations in HCC cells. Quinoide 3 was able to eradicate cancer stem cells, similar to the action of the stem cell inhibitor DAPT. However, the more cytotoxic VEFGR TKIs (IC50: 0.4-3.0 µM) including sorafenib, which is the only FDA approved drug for the treatment of HCC, enriched the hepatocellular cancer stem cell population by 2-3 fold after treatment. An aggressiveness factor (AF) was proposed to quantify the characteristics of drug candidates for their ability to eradicate the CSC subpopulation. Considering the tumour heterogeneity and marker positive cancer stem cell like subpopulation enrichment upon treatments in patients, this study emphasises the importance of the chemotherapeutic agent choice acting differentially on all the subpopulations including marker-positive CSCs.

18.
Eur J Nucl Med Mol Imaging ; 43(2): 249-258, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26280981

ABSTRACT

BACKGROUND: In oncological imaging using PET/CT, the standardized uptake value has become the most common parameter used to measure tracer accumulation. The aim of this analysis was to evaluate ultra high definition (UHD) and ordered subset expectation maximization (OSEM) PET/CT reconstructions for their potential impact on quantification. PATIENTS AND METHODS: We analyzed 40 PET/CT scans of lung cancer patients who had undergone PET/CT. Standardized uptake values corrected for body weight (SUV) and lean body mass (SUL) were determined in the single hottest lesion in the lung and normalized to the liver for UHD and OSEM reconstruction. Quantitative uptake values and their normalized ratios for the two reconstruction settings were compared using the Wilcoxon test. The distribution of quantitative uptake values and their ratios in relation to the reconstruction method used were demonstrated in the form of frequency distribution curves, box-plots and scatter plots. The agreement between OSEM and UHD reconstructions was assessed through Bland-Altman analysis. RESULTS: A significant difference was observed after OSEM and UHD reconstruction for SUV and SUL data tested (p < 0.0005 in all cases). The mean values of the ratios after OSEM and UHD reconstruction showed equally significant differences (p < 0.0005 in all cases). Bland-Altman analysis showed that the SUV and SUL and their normalized values were, on average, up to 60 % higher after UHD reconstruction as compared to OSEM reconstruction. CONCLUSION: OSEM and HD reconstruction brought a significant difference for SUV and SUL, which remained constantly high after normalization to the liver, indicating that standardization of reconstruction and the use of comparable SUV measurements are crucial when using PET/CT.


Subject(s)
Image Processing, Computer-Assisted/methods , Liver/diagnostic imaging , Lung Neoplasms/diagnostic imaging , Multimodal Imaging , Positron-Emission Tomography , Radiopharmaceuticals/pharmacokinetics , Tomography, X-Ray Computed , Female , Humans , Image Processing, Computer-Assisted/standards , Liver/metabolism , Male , Reference Values
20.
J Thorac Oncol ; 10(1): 84-92, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25226426

ABSTRACT

INTRODUCTION: Pharmacostatistical models can quantify different relationships and improve decision making in personalized medicine and drug development. Our objectives were to develop models describing non-small-cell lung cancer (NSCLC) dynamics during first-line treatment with erlotinib, and survival of the cohort. METHODS: Data from patients with advanced NSCLC (n = 39) treated first-line with erlotinib (150 mg/day) were analyzed using nonlinear mixed effects modeling. Exposure-driven disease-drug models were built to describe tumor metabolic and proliferative dynamics evaluated by positron emission tomography (PET) using 2'-deoxy-2'-[F]fluoro-D-glucose (FDG) and 3'-[F]fluoro-3'-deoxy-L-thymidine (FLT), respectively, at baseline, weeks 1 and 6 after starting erlotinib treatment. A parametric time-to-event model was built to describe overall survival (OS). Demographics, histology, mutational, smoking, and baseline performance statuses were tested for their effects on models developed, in addition to tumor dynamics on survival. RESULTS: An exponential relationship described progression, and a concentration-driven drug effect model described erlotinib effect. An activating epidermal growth factor receptor (EGFR) mutation increased the drug effect as assessed using FDG-PET by 2.19-fold (95% confidence interval [CI]:1.35-4.44). An exponential distribution described the times-to-death distribution. Baseline FDG uptake (p=0.0005; hazard ratio [HR] =1.26 for every unit increase, 95%CI: 1.13-1.42) and relative change in FDG uptake after 1 week of treatment (p=0.0073; HR=0.84 for every 10% drop, 95%CI: 0.71-0.91) were significant OS predictors irrespective of the EGFR mutational status. FLT-PET was statistically less significant than FDG-PET for OS prediction. CONCLUSION: Models describing tumor dynamics and survival of advanced NSCLC patients first-treated with erlotinib were developed. The impacts of different covariates were quantified.


Subject(s)
Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Protein Kinase Inhibitors/therapeutic use , Quinazolines/therapeutic use , Adult , Aged , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Cohort Studies , Dideoxynucleosides , Erlotinib Hydrochloride , Female , Fluorodeoxyglucose F18 , Humans , Lung Neoplasms/diagnostic imaging , Male , Middle Aged , Positron-Emission Tomography , Prognosis , Radiopharmaceuticals , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...