Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Biol (Weinh) ; 8(5): e2400018, 2024 05.
Article in English | MEDLINE | ID: mdl-38640945

ABSTRACT

Ophthalmic diseases affect many people, causing partial or total loss of vision and a reduced quality of life. The anterior segment of the eye accounts for nearly half of all visual impairment that can lead to blindness. Therefore, there is a growing demand for ocular research and regenerative medicine that specifically targets the anterior segment to improve vision quality. This study aims to generate a microfluidic platform for investigating the formation of the anterior segment of the eye derived from human induced pluripotent stem cells (hiPSC) under various spatial-mechanoresponsive conditions. Microfluidic platforms are developed to examine the effects of dynamic conditions on the generation of hiPSCs-derived ocular organoids. The differentiation protocol is validated, and mechanoresponsive genes are identified through transcriptomic analysis. Several culture strategies is implemented for the anterior segment of eye cells in a microfluidic chip. hiPSC-derived cells showed anterior eye cell characteristics in mRNA and protein expression levels under dynamic culture conditions. The expression levels of yes-associated protein and transcriptional coactivator PDZ binding motif (YAP/TAZ) and PIEZO1, varied depending on the differentiation and growth conditions of the cells, as well as the metabolomic profiles under dynamic culture conditions.


Subject(s)
Cell Differentiation , Induced Pluripotent Stem Cells , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Anterior Eye Segment/cytology , Anterior Eye Segment/metabolism , Microfluidics/methods , Microfluidics/instrumentation , Organoids/metabolism , Organoids/cytology , YAP-Signaling Proteins/metabolism , Lab-On-A-Chip Devices , Transcription Factors/metabolism , Transcription Factors/genetics , Ion Channels/genetics , Ion Channels/metabolism
2.
J Assist Reprod Genet ; 40(5): 1187-1195, 2023 May.
Article in English | MEDLINE | ID: mdl-36995558

ABSTRACT

PURPOSE: Rapid and easy detection of spermatogonial stem/progenitor cells (SSPCs) is crucial for clinicians dealing with male infertility caused by prepubertal testicular damage. Deep learning (DL) methods may offer visual tools for tracking SSPCs on testicular strips of prepubertal animal models. The purpose of this study is to detect and count the seminiferous tubules and SSPCs in newborn mouse testis sections using a DL method. METHODS: Testicular sections of the C57BL/6-type newborn mice were obtained and enumerated. Odd-numbered sections were stained with hematoxylin and eosin (H&E), and even-numbered sections were immune labeled (IL) with SSPC specific marker, SALL4. Seminiferous tubule and SSPC datasets were created using odd-numbered sections. SALL4-labeled sections were used as positive control. The YOLO object detection model based on DL was used to detect seminiferous tubules and stem cells. RESULTS: Test scores of the DL model in seminiferous tubules were obtained as 0.98 mAP, 0.93 precision, 0.96 recall, and 0.94 f1-score. The SSPC test scores were obtained as 0.88 mAP, 0.80 precision, 0.93 recall, and 0.82 f1-score. CONCLUSION: Seminiferous tubules and SSPCs on prepubertal testicles were detected with a high sensitivity by preventing human-induced errors. Thus, the first step was taken for a system that automates the detection and counting process of these cells in the infertility clinic.


Subject(s)
Deep Learning , Testis , Mice , Animals , Male , Humans , Spermatogonia , Mice, Inbred C57BL , Stem Cells , Spermatogenesis/genetics
3.
Biotech Histochem ; 98(1): 29-37, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35775276

ABSTRACT

Water hyssop (Bacopa monnieri L. Pennel) is a medicinal aquatic herb used to treat diseases in South Asia. Various regeneration protocols have been developed or modified in vitro to ensure the availability of biomass and secondary metabolites of Bacopa. We applied hydrothermally treated titanium dioxide (TiO2) nanoparticles (NPs) (TiO2-NPs) at different concentrations. Three explants, distal portion of half leaf (DPHL), proximal portion of half leaf (PPHL) and full leaf (FL), were used to evaluate response to TiO2. Regeneration from the three explants in vitro was similar except for shoot length. Application of TiO2-NPs exerted significant, but variable, effects on all parameters except percentage of shoot formation, which was 100%. Interactive effects of explant and TiO2-NPs exhibited significant, but variable, effects on fresh weight and percentage of callus formation. All explants produced more shoots using TiO2-NPs compared to control treatments. DPHL explants with application of 8 mg/l TiO2 produced more shoots than controls. Similarly, FL explant treated with 2 mg/l TiO2-NPs produced more shoots/explant than controls. All concentrations of TiO2-NPs produced significantly longer shoots compared to controls. Increased elongation of shoots justifies use of TiO2-NPs for propagation of plants in vitro during acclimatization. Use of TiO2-NPs for rapid elongation of shoots ultimately fosters survival of plants.


Subject(s)
Bacopa , Nanoparticles , Plants, Medicinal , Bacopa/metabolism , Plant Shoots/physiology , Regeneration
SELECTION OF CITATIONS
SEARCH DETAIL
...