Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(12): 14442-14454, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38559951

ABSTRACT

Orange is one of the primary fruits processed into juice and other products worldwide, leading to a vast amount of waste accumulation. Such waste has been considered as an attractive candidate for upcycling to obtain bioactive components remaining. The present study investigated the extraction of essential oil (EO), flavonoids, and pectin from industrial orange waste with a holistic approach. To maximize EO yield and d-limonene concentration, hydrodistillation (HD) conditions were selected to be 5.5 mL water/g solid for 180 min. Remaining solids were further used for flavonoid extraction where conventional solvent, sequential ultrasound + solvent, and ultrasound-assisted extraction (UE) were applied. UE applied for 50 min with 120 mL solvent/g solid yielded the highest total phenolic (TPCs) and total flavonoid contents (TFCs), antioxidant capacity, and hesperidin and neohesperidin concentrations. In terms of TPC, TFC, antioxidant capacity, and antibacterial activity, both EO and flavonoid fractions demonstrated moderate to high bioactivity. At the final step, ethanol precipitation was applied to obtain the pectin that was solubilized in hot water during HD and it was characterized by Fourier transform infrared, degree of esterification, and galacturonic acid content. Practical application: to ensure utilization in the food, pharmaceutical, and cosmetic industries, this study presents a combined method to obtain several value-added compounds from industrial orange waste. Bioactive EO and flavonoids obtained could have applications in functional food, supplements, or cosmetic formulations, whereas extracted pectin can be used in many formulated foods and drugs.

2.
J Food Sci ; 84(6): 1273-1280, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31059587

ABSTRACT

The effect of emulsifiers, emulsion stabilizer (maltodextrin, MD), and ß-cyclodextrin (BCD) on physical and oxidative properties of oil-in-water (O/W) emulsions (5%, 20%, 40% of oil, w/w) was investigated. Four different emulsifiers were selected based on their structure: two types of protein-based emulsifiers (sodium caseinate, SC; and whey protein isolate, WPI), and two types low molecular weight emulsifiers (LMEWs: lecithin, LEC; and Citrem, CITREM). Physical and oxidative stability of emulsions prepared with these emulsifiers together with MD were compared based on their creaming index (CI), viscosity, droplet size, zeta potential, peroxide and p-anisidine values. LMWE-stabilized emulsions (with LEC or CITREM) had better creaming stability with lower droplet sizes whereas protein-stabilized emulsions (with SC or WPI) had higher viscosities. Droplet size was the lowest when CITREM was used, which increased with increasing oil concentration for all emulsifiers. Formulation with the lowest CI value and droplet size was considered to be more prone to oxidation; therefore, a 1:1 (w/w) combination of CITREM with BCD was used to stabilize the emulsions to improve the oxidative as well as physical stability. Added BCD significantly increased the storage stability of emulsions by reducing CI and droplet size values with a simultaneous increase in the viscosity, both at room temperature and at storage conditions (at 4 and 55 o C). However, the oxidative as well as physical stability of BCD added emulsions were not improved, neither toward heat- nor light-induced lipid oxidation. PRACTICAL APPLICATION: This work investigated the effects of emulsifiers and dextrins on the stability of oil-in-water (O/W) emulsions. Both maltodextrin (MD) and ß-cyclodextrin (BCD) addition resulted in enhanced physical stability, the latter being more effective. The findings can be applied to formulate emulsions with improved shelf life within the limits of allowed daily intake (ADI) level of BCD (5 mg/kg bw per day).


Subject(s)
Emulsifying Agents/chemistry , Emulsions/chemistry , Oils/chemistry , Polysaccharides/chemistry , Water/chemistry , beta-Cyclodextrins/chemistry , Molecular Weight , Oxidation-Reduction , Viscosity
3.
Proteome Sci ; 13: 31, 2015.
Article in English | MEDLINE | ID: mdl-26628894

ABSTRACT

BACKGROUND: It has been discussed if the adverse health effect associated with the ingestion of trans fatty acids correlates with the food source, as the composition of the isomers varies in different foods. We have investigated the hepatocellular responses to the predominant trans fatty acid isomers in industrially produced partially hydrogenated vegetable oils (elaidic acid) and products of ruminant origin (trans-vaccenic acid). RESULTS: The responses of HepG2-SF cells exposed to 100 µM fatty acids during 7 days were examined. Elaidic acid decreased the cellular proliferation rate while trans-vaccenic acid had no effect. Analysis of cellular triacylglycerol fractions showed, that both trans fatty acids were metabolized by HepG2-SF cells, although elaidic acid, to a higher degree than trans-vaccenic, accumulated in the triacylglycerol fraction. Proteome analysis revealed that the overlap of differentially regulated proteins only contained four proteins, suggesting that the two trans fatty acid isomers affect the cells in different ways. The data are available via ProteomeXchange with identifier PXD000760. CONCLUSIONS: Our investigations revealed that the hepatocellular response to the two most abundant dietary positional C18:1 trans fatty acid isomers differ substantially. In addition, the results suggest that trans-vaccenic acid does not affect cholesterol metabolism adversely compared to elaidic acid.

4.
Langmuir ; 28(14): 6157-62, 2012 Apr 10.
Article in English | MEDLINE | ID: mdl-22397625

ABSTRACT

Use of biocatalysis for industrial synthetic chemistry is on the verge of significant growth. Enzyme immobilization as an effective strategy for improving the enzyme activity has emerged from developments especially in nanoscience and nanotechnology. Here, lipase from Burkholderia cepacia (LBC), as an example of the luxuriant enzymes, was successfully encapsulated in polycaprolactone (PCL) nanofibers, proven by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Evaluated in both organic and aqueous medium, the activation factor of the encapsulated enzymes in the hydrolysis reaction was generally higher than that in the transesterification reaction. Enhanced catalytic activities were found when 5-20 w/w % of LBC was loaded. The effect of different solvents pretreatment on the activity of immobilized LBC was also investigated. The highest activation factor was found up to 14 for the sample containing acetone-treated LBC/PCL (10 w/w %). The encapsulated lipase reserved 50% of its original activity after the 10th run in the transesterification reaction in hexane medium. The mechanism of activation of lipase catalytic ability based on active PCL nanofiberous matrix is proposed.


Subject(s)
Biocatalysis , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Lipase/chemistry , Lipase/metabolism , Nanofibers/chemistry , Polyesters/chemistry , Burkholderia cepacia/enzymology , Capsules , Enzyme Stability , Esters , Glycerol/chemistry , Solvents/chemistry , Water/chemistry
5.
Biotechnol Lett ; 33(10): 2065-71, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21695486

ABSTRACT

Candida rugosa lipase (CRL) and Candida antarctica lipase A (CALA) with improved activity and selectivity were prepared for use in organic solvent media. CRL bioimprinted with fatty acids exhibited eightfold enhanced transesterification activity in hexane. Combination of bioimprinting and coating with lecithin or with immobilization did not improve the activity further. CALA was immobilized with and without bioimprinting, none of which improved the activity. All modified lipases were tested for selective ethanolysis of fish oil to concentrate omega-3 polyunsaturated fatty acids (PUFA). None of the preparations, except the immobilized ones catalysed ethanolysis. Immobilized CRL-catalyzed ethanolysis giving 27% (v/v) ethyl esters (EE) in 48 h, of which 43 mol% was oleic acid but no PUFA was detected in the EE fraction. Fatty acid selectivity of CALA was significantly improved by immobilization combined with bioimprinting, resulting in 5.5-fold lower omega-3 PUFA in EE.


Subject(s)
Candida/enzymology , Enzymes, Immobilized/chemistry , Fish Oils/metabolism , Lipase/metabolism , Molecular Imprinting/methods , Biotechnology , Enzymes, Immobilized/metabolism , Esterification , Ethanol/chemistry , Ethanol/metabolism , Fatty Acids, Omega-3/chemistry , Fatty Acids, Omega-3/metabolism , Fatty Acids, Unsaturated/chemistry , Fatty Acids, Unsaturated/metabolism , Fish Oils/chemistry , Lecithins , Lipase/chemistry , Oleic Acids/chemistry , Oleic Acids/metabolism
6.
N Biotechnol ; 26(1-2): 37-43, 2009 Oct 01.
Article in English | MEDLINE | ID: mdl-19426844

ABSTRACT

The tunable property of ionic liquids (ILs) offers tremendous opportunity to rethink the strategy of current efforts to resolve technical challenges that occurred in many production approaches. To establish an efficient glycerolysis approach for enzymatic production of diglycerides (DG), this work reported a novel concept to improve DG yield by applying a binary IL system that consisted of one IL with better DG production selectivity and another IL being able to achieve higher conversion of triglycerides (TG). The candidates for combination were determined by individually examining lipase-catalyzed glycerolysis in different ILs, as a result, promising ones are divided into two groups based on their reaction specificities. The effects of parametric variables were then preliminarily evaluated, following a further investigation of the reaction performance in different binary IL systems from cross-group combinations. The combination of TOMA.Tf(2)N/Ammoeng 102 was employed for optimization by Response Surface Methodology. Eighty to eighty-five percent (mol%) of oil conversion and up to 90% (mol%) of total DG yield (73%, wt%) were obtained, which are markedly higher than those previously reported. This work demonstrated the practical feasibility to couple the technical advantage (high TG conversion and high DG production selective in this work) of individual ILs into a binary system to over-perform the reaction. It is believed that binary IL system could be also applicable to other enzymatic reaction systems for establishment of more efficient reaction protocols.


Subject(s)
Biotechnology/methods , Culture Media/chemistry , Diglycerides/biosynthesis , Ionic Liquids/chemistry , Lipase/metabolism , Biocatalysis , Glycerol/metabolism , Quaternary Ammonium Compounds/chemistry , Substrate Specificity , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...