Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-439473

ABSTRACT

The ongoing massive vaccination and the development of effective intervention offer the long-awaited hope to end the global rage of the COVID-19 pandemic. However, the rapidly growing SARS-CoV-2 variants might compromise existing vaccines and monoclonal antibody (mAb) therapies. Although there are valuable experimental studies about the potential threats from emerging variants, the results are limited to a handful of mutations and Eli Lilly and Regeneron mAbs. The potential threats from frequently occurring mutations on the SARS-CoV-2 spike (S) protein receptor-binding domain (RBD) to many mAbs in clinical trials are largely unknown. We fill the gap by developing a topology-based deep learning strategy that is validated with tens of thousands of experimental data points. We analyze 261,348 genome isolates from patients to identify 514 non-degenerate RBD mutations and investigate their impacts on 16 mAbs in clinical trials. Our findings, which are highly consistent with existing experimental results about variants from the UK, South Africa, Brazil, US-California, and Mexico shed light on potential threats of 95 high-frequency mutations to mAbs not only from Eli Lilly and Regeneron but also from Celltrion and Rockefeller University that are in clinical trials. We unveil, for the first time, that high-frequency mutations R346K/S, N439K, G446V, L455F, V483F/A, E484Q/V/A/G/D, F486L, F490L/V/S, Q493L, and S494P/L might compromise some of mAbs in clinical trials. Our study gives rise to a general perspective about how mutations will affect current vaccines.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-936013

ABSTRACT

The World Health Organization (WHO) has declared the 2019 novel coronavirus (2019-nCoV) infection outbreak a global health emergency. Currently, there is no effective anti-2019-nCoV medication. The sequence identity of the 3CL proteases of 2019-nCoV and SARS is 96%, which provides a sound foundation for structural-based drug repositioning (SBDR). Based on a SARS 3CL protease X-ray crystal structure, we construct a 3D homology structure of 2019-nCoV 3CL protease. Based on this structure and existing experimental datasets for SARS 3CL protease inhibitors, we develop an SBDR model based on machine learning and mathematics to screen 1465 drugs in the DrugBank that have been approved by the U.S. Food and Drug Administration (FDA). We found that many FDA approved drugs are potentially highly potent to 2019-nCoV.

3.
Preprint in English | bioRxiv | ID: ppbiorxiv-927889

ABSTRACT

Wuhan coronavirus, called 2019-nCoV, is a newly emerged virus that infected more than 9692 people and leads to more than 213 fatalities by January 30, 2020. Currently, there is no effective treatment for this epidemic. However, the viral protease of a coronavirus is well-known to be essential for its replication and thus is an effective drug target. Fortunately, the sequence identity of the 2019-nCoV protease and that of severe-acute respiratory syndrome virus (SARS-CoV) is as high as 96.1%. We show that the protease inhibitor binding sites of 2019-nCoV and SARS-CoV are almost identical, which means all potential anti-SARS-CoV chemotherapies are also potential 2019-nCoV drugs. Here, we report a family of potential 2019-nCoV drugs generated by a machine intelligence-based generative network complex (GNC). The potential effectiveness of treating 2019-nCoV by using some existing HIV drugs is also analyzed.

SELECTION OF CITATIONS
SEARCH DETAIL
...