Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Inorg Biochem ; 245: 112228, 2023 08.
Article in English | MEDLINE | ID: mdl-37149488

ABSTRACT

The electron paramagnetic resonance (EPR) investigation of mononuclear cis- and trans-(L1O)MoOCl2 complexes [L1OH = bis(3,5-dimethylpyrazolyl)-3-tert-butyl-2-hydroxy-5-methylphenyl)methane] reveals a significant difference in their spin Hamiltonian parameters which reflect different equatorial and axial ligand fields created by the heteroscorpionate donor atoms. Density functional theory (DFT) was used to calculate the values of principal components and relative orientations of the g and A tensors, and the molecular framework in four pairs of isomeric mononuclear oxo­molybdenum(V) complexes (cis- and trans-(L1O)MoOCl2, cis,cis- and cis,trans-(L-N2S2)MoOCl [L-N2S2H2 = N,N'-dimethyl-N,N'-bis(mercaptophenyl)ethylenediamine], cis,cis- and cis,trans-(L-N2S2)MoO(SCN), and cis- and trans-[(dt)2MoO(OMe)]2- [dtH2 = 2,3-dimercapto-2-butene]). Scalar relativistic DFT calculations were conducted using three different exchange-correlation functionals. It was found that the use of hybrid exchange-correlation functional with 25% of the Hartree-Fock exchange leads to the best quantitative agreement between theory and experiment. A simplified ligand-field approach was used to analyze the influence of the ligand fields in all cis- and trans-isomers on energies and contributions of molybdenum d-orbital manifold to g and A tensors and relative orientations. Specifically, contributions that originated from the spin-orbit coupling of the dxz, dyz, and dx2-y2 orbitals into the ground state have been discussed. The new findings are discussed in the context of the experimental data of mononuclear molybdoenzyme, DMSO reductase.


Subject(s)
Molybdenum , Electron Spin Resonance Spectroscopy , Density Functional Theory , Ligands
2.
ACS Appl Mater Interfaces ; 11(41): 38336-38346, 2019 Oct 16.
Article in English | MEDLINE | ID: mdl-31545021

ABSTRACT

Pelletization of basic immobilized amine sorbent (BIAS) particles is required to improve their mechanical strength and facilitate their practical CO2 capture application under fixed or dynamic reactor conditions. Herein, we utilized two methods to prepare amine-functionalized BIAS pellets. Method (ii-a) involved combining latex polychloroprene (PC)/polyamine solutions with fly ash (FA)/BIAS powder to form sorbent pellets. Alternatively, method (ii-b) entailed shaping and drying wet pastes of binder solution plus FA/SiO2 powder into pellet supports. These supports were then functionalized with leach-resistant polyethylenimine MW = 800 (PEI800)/N-N-diglycidyl-4-glycidyloxyaniline (tri-epoxide cross-linker, E3) or ethylenamine E100/E3 mixtures. All pellets were screened for CO2 capture by thermogravimetric analysis (dry 14% CO2/N2, 55-75 °C), H2O stability by accelerated water washing, and mechanical strength by crush and ball-mill attrition testing. The mechanism of superior method (ii-b) pellet formation was uncovered by N2 physisorption measurements, diffuse reflectance infrared Fourier transform spectroscopy, and scanning electron microscopy. Extended fixed bed testing of optimum E3/PEI800-0.13/1 pellets under practical conditions revealed complete CO2 capture stability of 1.5 mmol CO2/g after 48 h of continuous steam exposure (7.2% H2O/He, 105 °C) and minimal 14.6% loss in capacity after 75 hours of combined CO2 capture cycling and steam treating (48 h). This slight oxidative degradation could be alleviated by incorporating a K2CO3 antioxidant into the pellet formulation. Overall, the robust physiochemical properties of the polyamine/cross-linker method (ii-b) pellets confirm their suitability for pilot-scale testing.

3.
ChemSusChem ; 11(23): 4114-4122, 2018 Dec 11.
Article in English | MEDLINE | ID: mdl-30277652

ABSTRACT

Time-consuming thermogravimetric analysis (TGA) decomposition study is a typical practice to assess the stability of fresh and water-treated basic immobilized amine sorbents (BIAS)/catalysts. This work presents a faster and more precise spectroscopic UV/Vis/Cu2+ sorbent screening technique that quantifies aqueous amines washed from the BIAS by using UV-active amine/Cu2+ complexes. Six BIAS-based catalysts, containing different amine species and a crosslinker within silica, were treated with ultrapure water and then analyzed for their CO2 capture performance and amine leach resistance/stability by using TGA (catalysts, approximately 4 h) and UV/Vis/Cu2+ techniques (wash solution, few minutes). A comparative analysis revealed that directly quantifying washed amines with UV/Vis/Cu2+ is 9-127 times more precise than indirect testing of the sorbents by TGA. Similar trends in the H2 O stability profiles of the catalysts [organic content retained values (OCR)] were reported by both analysis methods, allowing UV/Vis/Cu2+ to replace TGA for quantifying unstable leached amines. The UV/Vis/Cu2+ OCR results could be used to predict the CO2 -capture stability profile of the sorbents, confirming the reliability of this technique to rapidly screen catalyst stability and performance.

4.
ACS Appl Mater Interfaces ; 9(21): 18283-18294, 2017 May 31.
Article in English | MEDLINE | ID: mdl-28498653

ABSTRACT

Recovering aqueous rare earth elements (REEs) from domestic water sources is one key strategy to diminish the U.S.'s foreign reliance of these precious commodities. Herein, we synthesized an array of porous, amine-epoxy monolith and particle REE recovery sorbents from different polyamine, namely tetraethylenepentamine, and diepoxide (E2), triepoxide (E3), and tetra-epoxide (E4) monomer combinations via a polymer-induced phase separation (PIPS) method. The polyamines provided -NH2 (primary amine) plus -NH (secondary amine) REE adsorption sites, which were partially reacted with C-O-C (epoxide) groups at different amine/epoxide ratios to precipitate porous materials that exhibited a wide range of apparent porosities and REE recoveries/affinities. Specifically, polymer particles (ground monoliths) were tested for their recovery of La3+, Nd3+, Eu3+, Dy3+, and Yb3+ (Ln3+) species from ppm-level, model REE solutions (pH ≈ 2.4, 5.5, and 6.4) and a ppb-level, simulated acid mine drainage (AMD) solution (pH ≈ 2.6). Screening the sorbents revealed that E3/TEPA-88 (88% theoretical reaction of -NH2 plus -NH) recovered, overall, the highest percentage of Ln3+ species of all particles from model 100 ppm- and 500 ppm-concentrated REE solutions. Water swelling (monoliths) and ex situ, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) (ground monoliths/particles) data revealed the high REE uptake by the optimized particles was facilitated by effective distribution of amine and hydroxyl groups within a porous, phase-separated polymer network. In situ DRIFTS results clarified that phase separation, in part, resulted from polymerization of the TEPA-E3 (N-N-diglycidyl-4-glycidyloxyaniline) species in the porogen via C-N bond formation, especially at higher temperatures. Most importantly, the E3/TEPA-88 material cyclically recovered >93% of ppb-level Ln3+ species from AMD solution in a recovery-strip-recovery scheme, highlighting the efficacy of these materials for practical applications.

5.
ACS Appl Mater Interfaces ; 8(20): 12780-91, 2016 05 25.
Article in English | MEDLINE | ID: mdl-27145200

ABSTRACT

Hybrid Class 1/Class 2 supported amine CO2 sorbents demonstrate superior performance under practical steam conditions, yet their amine immobilization and stabilization mechanisms are unclear. Uncovering the interactions responsible for the sorbents' robust features is critical for further improvements and can facilitate practical applications. We employ solid state (29)Si CP-MAS and 2-D FSLG (1)H-(13)C CP HETCOR NMR spectroscopies to probe the overall molecular interactions of aminosilane/silica, polyamine [poly(ethylenimine), PEI]/silica, and hybrid aminosilane/PEI/silica sorbents. A unique, sequential impregnation sorbent preparation method is executed in a diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) setup to decouple amine binding mechanisms at the amine-silica interface from those within bulk amine layers. These mechanisms are correlated with each sorbents' resistance to accelerated liquid H2O and TGA steam treatments (H2O stability) and to oxidative degradation (thermal stability). High percentages of CO2 capture retained (PCR) and organic content retained (OCR) values after H2O testing of N-(3-(trimethoxysilyl)propyl)ethylenediamine (TMPED)/PEI and (3-aminopropyl)trimethoxysilane (APTMS)/PEI hybrid sorbents are associated with a synergistic stabilizing effect of the amine species observed during oxidative degradation (thermal gravimetric analysis-differential scanning calorimetry, TGA-DSC). Solid state NMR spectroscopy reveals that the synergistic effect of the TMPED/PEI mixture is manifested by the formation of hydrogen-bonded PEI-NH2···NH2-TMPED and PEI-NH2···HO-Si/O-Si-O (TMPED, T(2)) linkages within the sorbent. DRIFTS further determines that PEI enhances the grafting of TMPED to silica and that PEI is dispersed among a stable network of polymerized TMPED in the bulk, utilizing H-bonded linkages. These findings provide the scientific basis for establishing a Class 4 category for aminosilane/polyamine/silica hybrid sorbents.

6.
ChemSusChem ; 8(12): 2041-5, 2015 Jun 22.
Article in English | MEDLINE | ID: mdl-26013690

ABSTRACT

Rapid testing of hydrophilic and hydrophobic basic immobilized amine sorbents (BIAS) for CO2 capture stability under practical conditions was achieved by direct contact of the sorbents with flowing liquid water. Losses in both CO2 capture capacity and amine content of sorbents after exposure to 0.5 mL min(-1) of H2 O at 25 °C for 40 min followed similar trends as losses observed after exposure to N2 /steam (105 °C, 7 % H2 O) for 10 h. We also found that hydrophobic TMPED helped stabilize sorbents to H2 O, which was confirmed by DRIFTS and combined TGA-DSC.


Subject(s)
Amines/chemistry , Carbon Dioxide/chemistry , Steam , Adsorption , Carbon Dioxide/isolation & purification , Hydrophobic and Hydrophilic Interactions , Time Factors
7.
J Phys Chem B ; 117(14): 3877-83, 2013 Apr 11.
Article in English | MEDLINE | ID: mdl-23470049

ABSTRACT

Nuclear spin relaxation, small-angle X-ray scattering (SAXS), and electrospray ionization mass spectrometry (ESI-MS) techniques are used to determine supramolecular arrangement of 3-methyl-1-octyl-4-phenyl-1H-triazol-1,2,3-ium bis(trifluoromethanesulfonyl)imide [OMPhTz][Tf2N], an example of a triazolium-based ionic liquid. The results obtained showed first-order thermodynamic dependence for nuclear spin relaxation of the anion. First-order relaxation dependence is interpreted as through-bond dipolar relaxation. Greater than first-order dependence was found in the aliphatic protons, aromatic carbons (including nearest neighbors), and carbons at the end of the aliphatic tail. Greater than first order thermodynamic dependence of spin relaxation rates is interpreted as relaxation resulting from at least one mechanism additional to through-bond dipolar relaxation. In rigid portions of the cation, an additional spin relaxation mechanism is attributed to anisotropic effects, while greater than first order thermodynamic dependence of the octyl side chain's spin relaxation rates is attributed to cation-cation interactions. Little interaction between the anion and the cation was observed by spin relaxation studies or by ESI-MS. No extended supramolecular structure was observed in this study, which was further supported by MS and SAXS. nuclear Overhauser enhancement (NOE) factors are used in conjunction with spin-lattice relaxation time (T1) measurements to calculate rotational correlation times for C-H bonds (the time it takes for the vector represented by the bond between the two atoms to rotate by one radian). The rotational correlation times are used to represent segmental reorientation dynamics of the cation. A combination of techniques is used to determine the segmental interactions and dynamics of this example of a triazolium-based ionic liquid.

8.
Dalton Trans ; 42(9): 3071-81, 2013 Mar 07.
Article in English | MEDLINE | ID: mdl-23212540

ABSTRACT

The oxygen atom transfer reactivity (OAT) of dioxo-Mo(VI) complexes of hydrotrispyrazolyl borate (hydrotris(3,5-dimethylpyrazolyl)borate, Tp(Me2); hydrotris(3-isopropylpyrazol-1-yl)borate, Tp(iPr)) with tertiary phosphines (PMe(3), PMe(2)Ph, PEt(3), PEt(2)Ph, PBu(n)(3), PMePh(2), or PEtPh(2)) has been investigated. In acetonitrile, these reactions proceed via the formation of a phosphoryl intermediate complex that undergoes a solvolysis reaction. We report the synthesis and characterization of several phosphoryl complexes. The rates of formation of phosphoryl complexes and their solvation were determined by spectrophotometry. The rates of the reactions and the properties of the phosphoryl species were investigated using the Quantitative Analysis of Ligand Effect (QALE) methodology. The results show that, at least in this system, the first step of the reaction is controlled primarily by the steric factor, and in the second step, both electronic and steric factors are important. We also analyzed the effect of ligands on the reaction rate i.e., Tp(Me2)vs. Tp(iPr).


Subject(s)
Borates/chemistry , Molybdenum/chemistry , Organometallic Compounds/chemistry , Oxygen/chemistry , Pyrazoles/chemistry , Kinetics , Ligands , Oxidation-Reduction , Phosphines/chemistry , Solvents/chemistry
9.
J Chromatogr Sci ; 50(10): 934-9, 2012.
Article in English | MEDLINE | ID: mdl-22695884

ABSTRACT

A method for selectively determining both free fatty acids (FFA) and triacylglycerides (TAGs) in biological oils was investigated and optimized using gas chromatography after esterification of the target species to their corresponding fatty acid methyl esters (FAMEs). The method used acid catalyzed esterification in methanolic solutions under conditions of varying severity to achieve complete conversion of more reactive FFAs while preserving the concentration of TAGs. Complete conversion of both free acids and glycerides to corresponding FAMEs was found to require more rigorous reaction conditions involving heating to 120°C for up to 2 h. Method validation was provided using gas chromatography-flame ionization detection, gas chromatography-mass spectrometry, and liquid chromatography-mass spectrometry. The method improves on existing methods because it allows the total esterified lipid to be broken down by FAMEs contributed by FFA compared to FAMEs from both FFA and TAGs. Single and mixed-component solutions of pure fatty acids and triglycerides, as well as a sesame oil sample to simulate a complex biological oil, were used to optimize the methodologies. Key parameters that were investigated included: HCl-to-oil ratio, temperature and reaction time. Pure free fatty acids were found to esterify under reasonably mild conditions (10 min at 50°C with a 2.1:1 HCl to fatty acid ratio) with 97.6 ± 2.3% recovery as FAMEs, while triglycerides were largely unaffected under these reaction conditions. The optimized protocol demonstrated that it is possible to use esterification reactions to selectively determine the free acid content, total lipid content, and hence, glyceride content in biological oils. This protocol also allows gas chromatography analysis of FAMEs as a more ideal analyte than glyceride species in their native state.


Subject(s)
Chromatography, Gas/methods , Fatty Acids, Nonesterified/analysis , Triglycerides/analysis , Chromatography, Liquid , Esterification , Fatty Acids, Nonesterified/chemistry , Mass Spectrometry/methods , Sesame Oil/chemistry , Temperature , Triglycerides/chemistry
10.
Inorg Chem ; 49(11): 4895-900, 2010 Jun 07.
Article in English | MEDLINE | ID: mdl-20433155

ABSTRACT

The oxygen atom transfer reactivity of the dioxo-Mo(VI) complex, Tp(iPr)MoO(2)(OPh) (Tp(iPr) = hydrotris(3-isopropylpyrazol-1-yl)borate), with a range of tertiary phosphines (PMe(3), PMe(2)Ph, PEt(3), PBu(n)(3), PEt(2)Ph, PEtPh(2), and PMePh(2)) has been investigated. The first step in all the reactions follows a second-order rate law indicative of an associative transition state, consistent with nucleophilic attack by the phosphine on an oxo ligand, namely, Tp(iPr)MoO(2)(OPh) + PR(3) --> Tp(iPr)MoO(OPh)(OPR(3)). The calculated free energy of activation for the formation of the OPMe(3) intermediate (Chem. Eur. J. 2006, 12, 7501) is in excellent agreement with the experimental DeltaG() value reported here. The second step of the reaction, that is, the exchange of the coordinated phosphine oxide by acetonitrile, Tp(iPr)MoO(OPh)(OPR(3)) + MeCN --> Tp(iPr)MoO(OPh)(MeCN) + OPR(3), is first-order in starting complex in acetonitrile. The reaction occurs via a dissociative interchange (I(d)) or associative interchange (I(a)) mechanism, depending on the nature of the phosphine oxide. The activation parameters for the solvolysis of Tp(iPr)MoO(OPh)(OPMe(3)) (DeltaH(++) = 56.3 kJ mol(-1); DeltaS(++) = -125.9 J mol(-1) K(-1); DeltaG(++) = 93.8 kJ mol(-1)) and Tp(iPr)MoO(OPh)(OPEtPh(2)) (DeltaH(++) = 66.5 kJ mol(-1); DeltaS(++) = -67.6 J mol(-1) K(-1); DeltaG(++) = 86.7 kJ mol(-1)) by acetonitrile are indicative of I(a) mechanisms. In contrast, the corresponding parameters for the solvolysis reaction of Tp(iPr)MoO(OPh)(OPEt(3)) (DeltaH(++) = 95.8 kJ mol(-1); DeltaS(++) = 26.0 J mol(-1) K(-1); DeltaG(++) = 88.1 kJ mol(-1)) and the remaining complexes by the same solvent are indicative of an I(d) mechanism. The equilibrium constant for the solvolysis of the oxo-Mo(V) phosphoryl complex, [Tp(iPr)MoO(OPh)(OPMe(3))](+), by acetonitrile was calculated to be 1.9 x 10(-6). The oxo-Mo(V) phosphoryl complex is more stable than the acetonitrile analogue, whereas the oxo-Mo(IV) acetonitrile complex is more stable than the phosphoryl analogue. The higher stability of the Mo(V) phosphoryl complex may explain the phosphate inhibition of sulfite oxidase.


Subject(s)
Coordination Complexes/chemistry , Oxygen/chemistry , Phosphines/chemistry , Ligands , Thermodynamics
11.
Chemistry ; 12(28): 7501-9, 2006 Sep 25.
Article in English | MEDLINE | ID: mdl-16865754

ABSTRACT

The oxygen-atom-transfer (OAT) reactivity of [LiPrMoO2(OPh)] (1, LiPr=hydrotris(3-isopropylpyrazol-1-yl)borate) with the tertiary phosphines PEt3 and PPh2Me in acetonitrile was investigated. The first step, [LiPrMoO2(OPh)]+PR3-->[LiPrMoO(OPh)(OPR3)], follows a second-order rate law with an associative transition state (PEt3, DeltaH not equal=48.4 (+/-1.9) kJ mol-1, DeltaS not equal=-149.2 (+/-6.4) J mol-1 K-1, DeltaG not equal=92.9 kJ mol-1; PPh2Me, DeltaH not equal=73.4 (+/-3.7) kJ mol-1, DeltaS not equal=-71.9 (+/-2.3) J mol-1 K-1, DeltaG not equal=94.8 kJ mol-1). With PMe3 as a model substrate, the geometry and the free energy of the transition state (TS) for the formation of the phosphine oxide-coordinated intermediate were calculated. The latter, 95 kJ mol-1, is in good agreement with the experimental values. An unexpectedly large O-P-C angle calculated for the TS suggests that there is significant O-nucleophilic attack on the P--C sigma* in addition to the expected nucleophilic attack of the P on the Mo==O pi*. The second step of the reaction, that is, the exchange of the coordinated phosphine oxide with acetonitrile, [LiPrMoO(OPh)(OPR3)]+MeCN-->[LiPrMoO(OPh)(MeCN)]+OPR3, follows a first-order rate law in MeCN. A dissociative interchange (Id) mechanism, with activation parameters of DeltaH not equal=93.5 (+/-0.9) kJ mol-1, DeltaS not equal=18.2 (+/-3.3) J mol-1 K-1, DeltaG not equal=88.1 kJ mol-1 and DeltaH not equal=97.9 (+/-3.4) kJ mol-1, DeltaS not equal=47.3 (+/-11.8) J mol-1 K-1, DeltaG not equal=83.8 kJ mol-1, for [LiPrMoO(OPh)(OPEt3)] (2 a) and [LiPrMoO(OPh)(OPPh2Me)] (2 b), respectively, is consistent with the experimental data. Although gas-phase calculations indicate that the Mo--OPMe3 bond is stronger than the Mo--NCMe bond, solvation provides the driving force for the release of the phosphine oxide and formation of [LiPrMoO(OPh)(MeCN)] (3).


Subject(s)
Molybdenum/chemistry , Oxygen/chemistry , Chemical Phenomena , Chemistry, Bioinorganic , Kinetics
12.
Dalton Trans ; (11): 1419-23, 2006 Mar 21.
Article in English | MEDLINE | ID: mdl-16518511

ABSTRACT

We have previously postulated a serine gated electron transfer hypothesis (Inorg. Chem, 2002, 41, 1281-1291) to possibly be involved in gating electron transfer between the Mo(V) and Mo(IV) states. In this study we explored the effect of solvent dielectric upon the rate and mechanism of isomerization of an oxo-Mo(V) core in attempt to understand the effect of solvent polarity to the isomerization reaction. To this end, the data suggests that there may be significant entropic contributions to the reorganization of metal center as a function of the local dielectric constant. Furthermore, we note that there is a change in the observed rate as well as the mechanism of the geometric rearrangement when it is examined in polar and non-polar environments. More specifically, in low dielectric media, the reaction proceeds either via a fast dissociation which is then followed by a twist mechanism or by a dissociation that is synchronized with the twist mechanism.


Subject(s)
Molybdenum/chemistry , Solvents/chemistry , Acetonitriles/chemistry , Crystallography, X-Ray , Electric Conductivity , Electrochemistry , Electron Transport , Electrons , Hot Temperature , Hydrogen-Ion Concentration , Iron-Sulfur Proteins/chemistry , Ligands , Micrococcal Nuclease/metabolism , Models, Chemical , Oxidation-Reduction , Oxidoreductases/chemistry
13.
Inorg Chem ; 42(19): 5999-6007, 2003 Sep 22.
Article in English | MEDLINE | ID: mdl-12971770

ABSTRACT

We have previously demonstrated that the complex [(L1O)MoOCl(2)], where L1OH = (2-hydroxy-3-tert-butyl-5-methylphenyl)bis(3,5-dimethylpyrazolyl)methane, exists as both cis and trans isomers (Kail, B.; Nemykin, V. N.; Davie, S. R.; Carrano, C. J.; Hammes, B. S.; Basu, P. Inorg. Chem. 2002, 41, 1281-1291). Here, the cis isomer is defined as the geometry with the heteroatom in the equatorial position, and the trans isomer is designated as the geometry with the heteroatom positioned trans to the terminal oxo group. The trans isomer represents the thermodynamically more stable geometry as indicated by its spontaneous formation from the cis isomer. In this report, we show that for complexes of [(LO)MoOCl(2)], where LOH is the sterically less restrictive (2-hydroxyphenyl)bis(3,5-dimethylpyrazolyl)methane, only the trans isomer could be isolated, while in the corresponding thiolate containing ligand (2-dimethylethanethiol)bis(3,5-dimethylpyrazolyl)methane (L3SH) only the cis isomer could be observed. In addition, we have isolated and structurally characterized the complex [(L1O)MoO(OPh)(Cl)], a rare example of a species possessing both cis and trans phenolates. Using DFT calculations, we have investigated the origins of the differences in stability between the cis and trans isomers in these complexes and suggest that they are related to the trans influence of the oxo-group. Crystal data for [(LO)MoOCl(2)] (1) include that it crystallizes in the triclinic space group P(-)1 with cell dimensions a = 8.9607 (12) A, b = 10.596 (4) A, c = 13.2998 (13) A, alpha = 98.03 (2) degrees, beta = 103.21 (2) degrees, gamma = 110.05(2) degrees, and Z = 2. [(L1O)MoO(OPh)Cl].2CH(2)Cl(2) (2.2CH(2)Cl(2)) crystallizes in the triclinic space group P(-)1 with cell dimensions a = 12.2740 (5) A, b = 13.0403 (5) A, c = 13.6141 (6) A, alpha = 65.799 (2) degrees, beta = 64.487 (2) degrees, gamma = 65.750 (2) degrees, and Z = 2. [(L3S)Mo(O)Cl(2)] (3) crystallizes in the orthorhombic space group Pna2(1), with cell dimensions a = 13.2213 (13) A, b = 8.817 (2) A, c = 15.649 (4) A, and Z = 4. The implications of these results on the function of mononuclear molybdoenzymes such as sulfite oxidase, and the DMSO reductase, are discussed.


Subject(s)
Enzymes/chemistry , Molybdenum/chemistry , Chemical Phenomena , Chemistry, Physical , Computer Simulation , Crystallography, X-Ray , Indicators and Reagents , Ligands , Models, Molecular , Molecular Conformation , Spectrophotometry, Infrared , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...