Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Pharm ; 656: 124118, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38615806

ABSTRACT

Fungal infections of cornea are important causes of blindness especially in developing nations with tropical climate. However, the challenges associated with current treatments are responsible for poor outcome. Natamycin is the only FDA-approved antifungal drug to treat fungal keratitis, but unfortunately due to its poor water solubility, it is available as suspension. The marketed suspension (5% Natamycin) has rapid precorneal clearance, poor corneal permeability, a higher frequency of administration, and corneal irritation due to undissolved suspended drug particles. In our study, we developed clear and stable natamycin-loaded nanomicelles (1% Natcel) to overcome the above challenges. We demonstrated that 1% Natcel could permeate the cornea better than 5% suspension. The developed 1% Natcel was able to provide sustained release for up to 24 h. Further, it was found to be biocompatible and also improved the mean residence time (MRT) than 5% suspension in tears. Therefore, the developed 1% Natcel could be a potential alternative treatment for fungal keratitis.


Subject(s)
Antifungal Agents , Cornea , Drug Liberation , Eye Infections, Fungal , Keratitis , Micelles , Nanoparticles , Natamycin , Natamycin/administration & dosage , Antifungal Agents/administration & dosage , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Keratitis/drug therapy , Keratitis/microbiology , Animals , Cornea/microbiology , Cornea/metabolism , Cornea/drug effects , Eye Infections, Fungal/drug therapy , Eye Infections, Fungal/microbiology , Rabbits , Solubility , Delayed-Action Preparations , Tears/metabolism
2.
Eur J Pharm Biopharm ; 197: 114208, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38336235

ABSTRACT

Glaucoma is known to be one of the principal causes of vision loss due to elevated intraocular pressure. Currently, latanoprost eye drops is used as first-line treatment for glaucoma; however, it possesses low bioavailability due to rapid precorneal clearance. A novel delivery system with a mucoadhesive property could overcome this problem. Therefore, we attempt to develop a combination of self-assembling latanoprost nanomicelles (Latcel) and a mucoadhesive polymer (N,O-carboxymethyl chitosan: N,O-CMC) to improve the corneal residence time. Latcel was developed using Poloxamer-407 by thin film hydration method, followed by the addition of N,O-CMC using simple solvation to obtain Latcel-CMC and characterized using various physicochemical characterization techniques. The particle size of Latcel-CMC was 94.07 ± 2.48 nm and a zeta potential of -16.03 ± 0.66 mV, with a sustained release for 24h whereas marketed latanoprost drops released 90 % of the drug within 1h. In vitro cytotoxicity studies, HET-CAM, and in vivo Draize test showed the biocompatibility of Latcel-CMC. Cellular uptake studies performed using fluorescein isothiocyanate (FITC) loaded nanomicelles in human corneal epithelial cells indicates the increased cellular uptake as compare to plain FITC solution. In vivo ocular residence time was evaluated in Wistar rats using Indocyanine green (ICG) loaded nanomicelles by an in vivo imaging system (IVIS), indicating Latcel-CMC (8h) has better residence time than plain ICG solution (2h). The Latcel-CMC showed improved corneal residence time and sustained release of latanoprost due to increased mucoadhesion. Thus, the developed N,O-Carboxymethyl chitosan based nanomicelles eye drop could be a better strategy than conventional eye drops for topical delivery of latanoprost to treat glaucoma.


Subject(s)
Chitosan , Glaucoma , Rats , Animals , Humans , Antiglaucoma Agents , Latanoprost/therapeutic use , Delayed-Action Preparations/therapeutic use , Drug Carriers/chemistry , Fluorescein-5-isothiocyanate , Rats, Wistar , Glaucoma/drug therapy , Chitosan/chemistry , Cornea , Ophthalmic Solutions , Drug Delivery Systems
SELECTION OF CITATIONS
SEARCH DETAIL
...