Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Soft Matter ; 19(40): 7764-7774, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37791487

ABSTRACT

Numerical simulations are performed on the collective dynamics of active disks, whose self-propulsion speed (U) varies in time, and whose orientation evolves according to rotational Brownian motion. Two protocols for the evolution of speed are considered: (i) a deterministic one involving a periodic change in U at a frequency ω; and (ii) a stochastic one in which the speeds are drawn from a power-law distribution at time-intervals governed by a Poissonian process of rate ß. In the first case, an increase in ω causes the disks to go from a clustered state to a homogeneous one through an apparent phase-transition, provided that the direction of self-propulsion is allowed to reverse. Similarly, in the second case, for a fixed value of ß, the extent of cluster-breakup is larger when reversals in the self-propulsion direction are permitted. Motility-induced phase separation of the disks may therefore be avoided in active matter suspensions in which the constituents are allowed to reverse their self-propulsion direction, immaterial of the precise temporal nature of the reversal (deterministic or stochastic). Equally, our results demonstrate that phase separation could occur even in the absence of a time-averaged motility of an individual active agent, provided that the rate of direction reversals is smaller than the orientational diffusion rate.

2.
Phys Rev E ; 107(4-1): 044609, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37198791

ABSTRACT

The dynamics of a two-dimensional autophoretic disk is quantified as a minimal model for the chaotic trajectories undertaken by active droplets. Via direct numerical simulations, we show that the mean-square displacement of the disk in a quiescent fluid is linear at long times. Surprisingly, however, this apparently diffusive behavior is non-Brownian, owing to strong cross correlations in the displacement tensor. The effect of a shear flow field on the chaotic motion of an autophoretic disk is examined. Here, the stresslet on the disk is chaotic for weak shear flows; a dilute suspension of such disks would exhibit a chaotic shear rheology. This chaotic rheology is quenched first into a periodic state and ultimately a steady state as the flow strength is increased.

3.
Phys Rev E ; 107(2-1): 024608, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36932547

ABSTRACT

The gravitational settling of oil droplets solubilizing in an aqueous micellar solution contained in a capillary channel is investigated. The motion of these active droplets reflects a competition between gravitational and Marangoni forces, the latter due to interfacial tension gradients generated by differences in filled-micelle concentrations along the oil-water interface. This competition is studied by varying the surfactant concentration, the density difference between the droplet and the continuous phase, and the viscosity of the continuous phase. The Marangoni force enhances the settling speed of an active droplet when compared to the Hadamard-Rybczynski prediction for a (surfactant free) droplet settling in Stokes flow. The Marangoni force can also induce lateral droplet motion, suggesting that the Marangoni and gravitational forces are not always aligned. The decorrelation rate (α) of the droplet motion, measured as the initial slope of the velocity autocorrelation and indicative of the extent to which the Marangoni and gravitational forces are aligned during settling, is examined as a function of the droplet size: correlated motion (small values of α) is observed at both small and large droplet radii, whereas significant decorrelation can occur between these limits. This behavior of active droplets settling in a capillary channel is in marked contrast to that observed in a dish, where the decorrelation rate increases with the droplet radius before saturating at large values of droplet radius. A simple relation for the crossover radius at which the maximal value of α occurs for an active settling droplet is proposed.

4.
Soft Matter ; 17(30): 7133-7157, 2021 Aug 05.
Article in English | MEDLINE | ID: mdl-34259278

ABSTRACT

The Rouse model with internal friction (RIF), a widely used theoretical framework to interpret the effects of internal friction on conformational transitions in biomolecules, is shown to be an approximate treatment that is based on preaveraging internal friction. By comparison with Brownian dynamics simulations of an exact coarse-grained model that incorporates fluctuations in internal friction, the accuracy of the preaveraged model predictions is examined both at and away from equilibrium. While the two models predict intrachain autocorrelations that approach each other for long enough chain segments, they differ in their predictions for shorter segments. Furthermore, the two models differ qualitatively in their predictions for the chain extension and viscosity in shear flow, which is taken to represent a prototypical out-of-equilibrium condition.


Subject(s)
Molecular Dynamics Simulation , Polymers , Friction , Molecular Conformation , Viscosity
5.
J Chem Phys ; 149(9): 094903, 2018 Sep 07.
Article in English | MEDLINE | ID: mdl-30195310

ABSTRACT

The effect of fluctuating internal viscosity and hydrodynamic interactions on a range of rheological properties of dilute polymer solutions is examined using a finitely extensible dumbbell model for a polymer. Brownian dynamics simulations are used to compute both transient and steady state viscometric functions in shear flow. The results enable a careful differentiation of the influence, on rheological properties, of solvent-mediated friction from that of a dissipative mechanism that is independent of solvent viscosity. In particular, hydrodynamic interactions have a significant influence on the magnitude of the stress jump at the inception of shear flow, and on the transient viscometric functions, but a negligible effect on the steady state viscometric functions at high shear rates. Zero-shear rate viscometric functions of free-draining dumbbells remain essentially independent of the internal viscosity parameter, as predicted by the Gaussian approximation, but the inclusion of hydrodynamic interactions induces a dependence on both the hydrodynamic interaction and the internal viscosity parameter. Large values of the internal viscosity parameter lead to linear viscoelastic predictions that mimic the behavior of rigid dumbbell solutions. On the other hand, steady-shear viscometric functions at high shear rates differ in general from those for rigid dumbbells, depending crucially on the finite extensibility of the dumbbell spring.

SELECTION OF CITATIONS
SEARCH DETAIL
...