Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Redox Biol ; 69: 103031, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38184997

ABSTRACT

The Kelch-like ECH-associated protein 1 (KEAP1) - Nuclear factor erythroid 2 -related factor 2 (NRF2) pathway is the major transcriptional stress response system in cells against oxidative and electrophilic stress. NRF2 is frequently constitutively active in many cancers, rendering the cells resistant to chemo- and radiotherapy. Loss-of-function (LOF) mutations in the repressor protein KEAP1 are common in non-small cell lung cancer, particularly adenocarcinoma. While the mutations can occur throughout the gene, they are enriched in certain areas, indicating that these may have unique functional importance. In this study, we show that in the GSEA analysis of TCGA lung adenocarcinoma RNA-seq data, the KEAP1 mutations in R320 and R470 were associated with enhanced Tumor Necrosis Factor alpha (TNFα) - Nuclear Factor kappa subunit B (NFκB) signaling as well as MYC and MTORC1 pathways. To address the functional role of these hotspot mutations, affinity purification and mass spectrometry (AP-MS) analysis of wild type (wt) KEAP1 and its mutation forms, R320Q and R470C were employed to interrogate differences in the protein interactome. We identified TNF receptor associated factor 2 (TRAF2) as a putative protein interaction partner. Both mutant KEAP1 forms showed increased interaction with TRAF2 and other anti-apoptotic proteins, suggesting that apoptosis signalling could be affected by the protein interactions. A549 lung adenocarcinoma cells overexpressing mutant KEAP1 showed high TRAF2-mediated NFκB activity and increased protection against apoptosis, XIAP being one of the key proteins involved in anti-apoptotic signalling. To conclude, KEAP1 R320Q and R470C and its interaction with TRAF2 leads to activation of NFκB pathway, thereby protecting against apoptosis.


Subject(s)
Adenocarcinoma of Lung , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Lung Neoplasms/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , TNF Receptor-Associated Factor 2/genetics , TNF Receptor-Associated Factor 2/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , Cell Line, Tumor , Intracellular Signaling Peptides and Proteins/metabolism , Adenocarcinoma of Lung/genetics , Apoptosis/genetics , NF-kappa B/genetics , NF-kappa B/metabolism , Mutation
2.
J Invest Dermatol ; 142(11): 3041-3051.e10, 2022 11.
Article in English | MEDLINE | ID: mdl-35580697

ABSTRACT

The tumor microenvironment, with distinctive cell types and a complex extracellular matrix has a tremendous impact on cancer progression. In this study, we investigated the effects of proinflammatory (M1) and immunosuppressive (M2) macrophages on hyaluronan (HA) matrix formation and inflammatory response in melanoma cells. Proinflammatory factors secreted from M1 macrophages stimulated the formation of a thick pericellular HA matrix in melanoma cells due to upregulation of HA synthase 2 (HAS2). HAS2 silencing reversed the effect of M1 conditioned medium on pericellular HA coat formation, and interestingly, it also partly downregulated the M1 conditioned medium‒induced upregulation of inflammation-related genes (IL1ß, IL6), as did the inhibitors for TNFR and IKKγ. Gene set enrichment analysis revealed that genes related to inflammatory responses and TNF-α signaling via NF-κB are enriched in the M1 conditioned medium‒treated melanoma cells. Moreover, the expression of matrix metalloproteinase 9 and three-dimensional cell invasion were induced in these cells, whereas M2 macrophages had no effect on HA synthesis, inflammatory response, or invasion. Our results indicate that the activation of TNFR-NF-κB signaling in M1 conditioned medium‒treated cells leads to HAS2 upregulation, which associates with a protumor inflammatory and invasive phenotype of melanoma cells.


Subject(s)
Melanoma , NF-kappa B , Humans , NF-kappa B/metabolism , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Tumor Necrosis Factor-alpha/metabolism , Hyaluronic Acid/metabolism , Culture Media, Conditioned/pharmacology , Culture Media, Conditioned/metabolism , Interleukin-6/metabolism , Macrophages/metabolism , Inflammation/pathology , Melanoma/pathology , Tumor Microenvironment
3.
Front Oncol ; 11: 811434, 2021.
Article in English | MEDLINE | ID: mdl-35127523

ABSTRACT

The incidence of cutaneous melanoma is rapidly increasing worldwide. Cutaneous melanoma is an aggressive type of skin cancer, which originates from malignant transformation of pigment producing melanocytes. The main risk factor for melanoma is ultraviolet (UV) radiation, and thus it often arises from highly sun-exposed skin areas and is characterized by a high mutational burden. In addition to melanoma-associated mutations such as BRAF, NRAS, PTEN and cell cycle regulators, the expansion of melanoma is affected by the extracellular matrix surrounding the tumor together with immune cells. In the early phases of the disease, hyaluronan is the major matrix component in cutaneous melanoma microenvironment. It is a high-molecular weight polysaccharide involved in several physiological and pathological processes. Hyaluronan is involved in the inflammatory reactions associated with UV radiation but its role in melanomagenesis is still unclear. Although abundant hyaluronan surrounds epidermal and dermal cells in normal skin and benign nevi, its content is further elevated in dysplastic lesions and local tumors. At this stage hyaluronan matrix may act as a protective barrier against melanoma progression, or alternatively against immune cell attack. While in advanced melanoma, the content of hyaluronan decreases due to altered synthesis and degradation, and this correlates with poor prognosis. This review focuses on hyaluronan matrix in cutaneous melanoma and how the changes in hyaluronan metabolism affect the progression of melanoma.

SELECTION OF CITATIONS
SEARCH DETAIL
...