Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Pharm Res ; 41(2): 223-234, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38158503

ABSTRACT

PURPOSE: Accurate methods to determine dermal pharmacokinetics are important to increase the rate of clinical success in topical drug development. We investigated in an in vivo pig model whether the unbound drug concentration in the interstitial fluid as determined by dermal open flow microperfusion (dOFM) is a more reliable measure of dermal exposure compared to dermal biopsies for seven prescription or investigational drugs. In addition, we verified standard dOFM measurement using a recirculation approach and compared dosing frequencies (QD versus BID) and dose strengths (high versus low drug concentrations). METHODS: Domestic pigs were topically administered seven different drugs twice daily in two studies. On day 7, drug exposures in the dermis were assessed in two ways: (1) dOFM provided the total and unbound drug concentrations in dermal interstitial fluid, and (2) clean punch biopsies after heat separation provided the total concentrations in the upper and lower dermis. RESULTS: dOFM showed sufficient intra-study precision to distinguish interstitial fluid concentrations between different drugs, dose frequencies and dose strengths, and had good reproducibility between studies. Biopsy concentrations showed much higher and more variable values. Standard dOFM measurements were consistent with values obtained with the recirculation approach. CONCLUSIONS: dOFM pig model is a robust and reproducible method to directly determine topical drug concentration in dermal interstitial fluid. Dermal biopsies were a less reliable measure of dermal exposure due to possible contributions from drug bound to tissue and drug associated with skin appendages.


Subject(s)
Skin , Swine , Animals , Administration, Cutaneous , Reproducibility of Results , Skin/metabolism
3.
Biomedicines ; 10(4)2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35453606

ABSTRACT

The treatment of chronic wounds still challenges modern medicine because of these wounds' heterogenic pathophysiology. Processes such as inflammation, ischemia and bacterial infection play major roles in the progression of a chronic wound. In recent years, preclinical wound models have been used to understand the underlying processes of chronic wound formation. However, the wound models used to investigate chronic wounds often lack translatability from preclinical models to patients, and often do not take exaggerated inflammation into consideration. Therefore, we aimed to investigate prolonged inflammation in a porcine wound model by using resiquimod, a TLR7 and TLR8 agonist. Pigs received full thickness excisional wounds, where resiquimod was applied daily for 6 days, and untreated wounds served as controls. Dressing change, visual documentation and wound scoring were performed daily. Biopsies were collected for histological as well as gene expression analysis. Resiquimod application on full thickness wounds induced a visible inflammation of wounds, resulting in delayed wound healing compared to non-treated control wounds. Gene expression analysis revealed high levels of IL6, MMP1 and CD68 expression after resiquimod application, and histological analysis showed increased immune cell infiltration. By using resiquimod, we were able to show that prolonged inflammation delayed wound healing, which is often observed in chronic wounds in patients. The model we used shows the importance of inflammation in wound healing and gives an insight into the progression of chronic wounds.

4.
Int J Mol Sci ; 22(17)2021 Aug 26.
Article in English | MEDLINE | ID: mdl-34502118

ABSTRACT

In burn injuries, risk factors and limitations to treatment success are difficult to assess clinically. However, local cellular responses are characterized by specific gene-expression patterns. MicroRNAs (miRNAs) are single-stranded, non-coding RNAs that regulate mRNA expression on a posttranscriptional level. Secreted through exosome-like vesicles (ELV), miRNAs are intracellular signalers and epigenetic regulators. To date, their role in the regulation of the early burn response remains unclear. Here, we identified 43 miRNAs as potential regulators of the early burn response through the bioinformatics analysis of an existing dataset. We used an established human ex vivo skin model of a deep partial-thickness burn to characterize ELVs and miRNAs in dermal interstitial fluid (dISF). Moreover, we identified miR-497-5p as stably downregulated in tissue and dISF in the early phase after a burn injury. MiR-218-5p and miR-212-3p were downregulated in dISF, but not in tissue. Target genes of the miRNAs were mainly upregulated in tissue post-burn. The altered levels of miRNAs in dISF of thermally injured skin mark them as new biomarker candidates for burn injuries. To our knowledge, this is the first study to report miRNAs altered in the dISF in the early phase of deep partial-thickness burns.


Subject(s)
Biomarkers , Burns/etiology , Gene Expression Regulation , MicroRNAs/genetics , Burns/metabolism , Burns/pathology , Computational Biology/methods , Exosomes/metabolism , Extracellular Vesicles/metabolism , Gene Expression Profiling , Humans , Skin/metabolism , Skin/pathology , Time Factors , Transcriptome
5.
Burns ; 46(8): 1924-1932, 2020 12.
Article in English | MEDLINE | ID: mdl-32660829

ABSTRACT

BACKGROUND: Burn wound progression is a significant problem as burns initially thought to be superficial can actually become full thickness over time. Cooling is an efficient method to reduce burn wound conversion. However, if the cooling agent is below room temperature, depending on the wound size the patient is at risk of hypothermia. Additionally, tissue perfusion is reduced leading to an aggravation of burn wound progression. We investigated if wound dressings based on non-pre-cooled bacterial nanocellulose (BNC) with a high water content cool a burn just by evaporation and reduce the intradermal damages in the skin. MATERIAL AND METHODS: In a human ex-vivo model, skin explants underwent contact burns using a 100 °C hot steel block. The burned areas were divided into two groups of which one was cooled with a BNC-based wound dressing. Intradermal temperature probes measured temperature in cooled and uncooled burn sites over 24 h. For histological assessments of the burned areas biopsies were taken at different time points. High mobility group box-1 (HMBG1) staining served as marker for cell vitality and necrosis in the different skin layers. RESULTS: Intradermal temperature measurement showed that application of the BNC-based wound dressing reduced temperature significantly in burned skin. This cooling effect resulted in a maximum temperature difference of 6.4 ± 1.9 °C and a significant mean reduction of the area under the curve in the first hour after burn of 62% (p < 0.0001). The histological results showed less necrosis and less dermal-epidermal separation in the cooled areas. The HMGB1 staining revealed more vital cells in the cooled group than in the uncooled group. CONCLUSION: Based on our results, BNC-based wound dressings cool a burn. Intradermal temperature as well as thermal damage of the tissue was reduced. The tested BNC-based wound dressing can be used without pre-cooling to cool a burn as well as to reduce the burn BNC-based wound progression through its evaporation cooling effect.


Subject(s)
Body Temperature/drug effects , Burns/drug therapy , Models, Biological , Wound Healing/physiology , Area Under Curve , Austria , Burns/complications , Humans , ROC Curve , Wound Healing/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...