Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 12(5): e0177001, 2017.
Article in English | MEDLINE | ID: mdl-28489880

ABSTRACT

Vegetated marine habitats are globally important carbon sinks, making a significant contribution towards mitigating climate change, and they provide a wide range of other ecosystem services. However, large gaps in knowledge remain, particularly for seagrass meadows in Africa. The present study estimated biomass and sediment organic carbon (Corg) stocks of four dominant seagrass species in Gazi Bay, Kenya. It compared sediment Corg between seagrass areas in vegetated and un-vegetated 'controls', using the naturally patchy occurence of seagrass at this site to test the impacts of seagrass growth on sediment Corg. It also explored relationships between the sediment and above-ground Corg, as well as between the total biomass and above-ground parameters. Sediment Corg was significantly different between species, range: 160.7-233.8 Mg C ha-1 (compared to the global range of 115.3 to 829.2 Mg C ha-1). Vegetated areas in all species had significantly higher sediment Corg compared with un-vegetated controls; the presence of seagrass increased Corg by 4-6 times. Biomass carbon differed significantly between species with means ranging between 4.8-7.1 Mg C ha-1 compared to the global range of 2.5-7.3 Mg C ha-1. To our knowledge, these are among the first results on seagrass sediment Corg to be reported from African seagrass beds; and contribute towards our understanding of the role of seagrass in global carbon dynamics.


Subject(s)
Carbon Sequestration , Carbon/analysis , Climate Change , Grassland , Bays , Biomass , Geologic Sediments/analysis , Kenya
2.
Glob Chang Biol ; 23(1): 224-234, 2017 01.
Article in English | MEDLINE | ID: mdl-27435526

ABSTRACT

Despite covering only approximately 138 000 km2 , mangroves are globally important carbon sinks with carbon density values three to four times that of terrestrial forests. A key challenge in evaluating the carbon benefits from mangrove forest conservation is the lack of rigorous spatially resolved estimates of mangrove sediment carbon stocks; most mangrove carbon is stored belowground. Previous work has focused on detailed estimations of carbon stores over relatively small areas, which has obvious limitations in terms of generality and scope of application. Most studies have focused only on quantifying the top 1 m of belowground carbon (BGC). Carbon stored at depths beyond 1 m, and the effects of mangrove species, location and environmental context on these stores, are poorly studied. This study investigated these variables at two sites (Gazi and Vanga in the south of Kenya) and used the data to produce a country-specific BGC predictive model for Kenya and map BGC store estimates throughout Kenya at spatial scales relevant for climate change research, forest management and REDD+ (reduced emissions from deforestation and degradation). The results revealed that mangrove species was the most reliable predictor of BGC; Rhizophora muronata had the highest mean BGC with 1485.5 t C ha-1 . Applying the species-based predictive model to a base map of species distribution in Kenya for the year 2010 with a 2.5 m2 resolution produced an estimate of 69.41 Mt C [±9.15 95% confidence interval (C.I.)] for BGC in Kenyan mangroves. When applied to a 1992 mangrove distribution map, the BGC estimate was 75.65 Mt C (±12.21 95% C.I.), an 8.3% loss in BGC stores between 1992 and 2010 in Kenya. The country-level mangrove map provides a valuable tool for assessing carbon stocks and visualizing the distribution of BGC. Estimates at the 2.5 m2 resolution provide sufficient details for highlighting and prioritizing areas for mangrove conservation and restoration.


Subject(s)
Climate Change , Conservation of Natural Resources , Wetlands , Carbon , Kenya
3.
Ecol Evol ; 4(16): 3187-200, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25473472

ABSTRACT

Sedimentation results in the creation of new mudflats for mangroves to colonize among other benefits. However, large sediment input in mangrove areas may be detrimental to these forests. The dynamics of phenological events of three mangrove tree species (Avicennia marina, Ceriops tagal, and Rhizophora mucronata) were evaluated under experimental sediment burial simulating sedimentation levels of 15, 30, and 45 cm.While there was generally no shift in timing of phenological events with sedimentation, the three mangrove tree species each responded differently to the treatments.Partially buried A. marina trees produced more leaves than the controls during the wet season and less during the dry season. Ceriops tagal on the other hand had higher leaf loss and low replacement rates in the partially buried trees during the first 6 months of the experiment but adapted with time, resulting in either equal or higher leaf emergence rates than the controls.Rhizophora mucronata maintained leaf emergence and loss patterns as the unaffected controls but had a higher fecundity and productivity in the 15-cm sedimentation level.The results suggest that under incidences of large sedimentation events (which could be witnessed as a result of climate change impacts coupled with anthropogenic disturbances), mangrove trees may capitalize on "advantages" associated with terrestrial sediment brought into the biotope, thus maintaining the pattern of phenological events.

4.
PLoS One ; 9(9): e107868, 2014.
Article in English | MEDLINE | ID: mdl-25244646

ABSTRACT

The importance of mangrove forests in carbon sequestration and coastal protection has been widely acknowledged. Large-scale damage of these forests, caused by hurricanes or clear felling, can enhance vulnerability to erosion, subsidence and rapid carbon losses. However, it is unclear how small-scale logging might impact on mangrove functions and services. We experimentally investigated the impact of small-scale tree removal on surface elevation and carbon dynamics in a mangrove forest at Gazi bay, Kenya. The trees in five plots of a Rhizophora mucronata (Lam.) forest were first girdled and then cut. Another set of five plots at the same site served as controls. Treatment induced significant, rapid subsidence (-32.1±8.4 mm yr-1 compared with surface elevation changes of +4.2±1.4 mm yr-1 in controls). Subsidence in treated plots was likely due to collapse and decomposition of dying roots and sediment compaction as evidenced from increased sediment bulk density. Sediment effluxes of CO2 and CH4 increased significantly, especially their heterotrophic component, suggesting enhanced organic matter decomposition. Estimates of total excess fluxes from treated compared with control plots were 25.3±7.4 tCO2 ha-1 yr-1 (using surface carbon efflux) and 35.6±76.9 tCO2 ha-1 yr-1 (using surface elevation losses and sediment properties). Whilst such losses might not be permanent (provided cut areas recover), observed rapid subsidence and enhanced decomposition of soil sediment organic matter caused by small-scale harvesting offers important lessons for mangrove management. In particular mangrove managers need to carefully consider the trade-offs between extracting mangrove wood and losing other mangrove services, particularly shoreline stabilization, coastal protection and carbon storage.


Subject(s)
Ecosystem , Rhizophoraceae , Tropical Climate , Carbon/chemistry , Conservation of Natural Resources , Geologic Sediments/chemistry , Kenya
5.
Ann Bot ; 113(4): 741-52, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24510216

ABSTRACT

BACKGROUND AND AIMS: Successive vascular cambia are involved in the secondary growth of at least 200 woody species from >30 plant families. In the mangrove Avicennia these successive cambia are organized in patches, creating stems with non-concentric xylem tissue surrounded by internal phloem tissue. Little is known about radial growth and tree stem dynamics in trees with this type of anatomy. This study aims to (1) clarify the process of secondary growth of Avicennia trees by studying its patchiness; and (2) study the radial increment of Avicennia stems, both temporary and permanent, in relation to local climatic and environmental conditions. A test is made of the hypothesis that patchy radial growth and stem dynamics enable Avicennia trees to better survive conditions of extreme physiological drought. Methods Stem variations were monitored by automatic point dendrometers at four different positions around and along the stem of two Avicennia marina trees in the mangrove forest of Gazi Bay (Kenya) during 1 year. KEY RESULTS: Patchiness was found in the radial growth and shrinkage and swelling patterns of Avicennia stems. It was, however, potentially rather than systematically present, i.e. stems reacted either concentrically or patchily to environment triggers, and it was fresh water availability and not tidal inundation that affected radial increment. CONCLUSIONS: It is concluded that the ability to develop successive cambia in a patchy way enables Avicennia trees to adapt to changes in the prevailing environmental conditions, enhancing its survival in the highly dynamic mangrove environment. Limited water could be used in a more directive way, investing all the attainable resources in only some locations of the tree stem so that at least at these locations there is enough water to, for example, overcome vessel embolisms or create new cells. As these locations change with time, the overall functioning of the tree can be maintained.


Subject(s)
Avicennia/growth & development , Cambium/growth & development , Avicennia/anatomy & histology , Avicennia/physiology , Cambium/anatomy & histology , Cambium/physiology , Climate , Environment , Kenya , Phloem/anatomy & histology , Phloem/growth & development , Phloem/physiology , Plant Stems/anatomy & histology , Plant Stems/growth & development , Plant Stems/physiology , Seasons , Trees , Water/physiology , Wood/anatomy & histology , Wood/growth & development , Wood/physiology , Xylem/anatomy & histology , Xylem/growth & development , Xylem/physiology
6.
Oecologia ; 172(1): 271-8, 2013 May.
Article in English | MEDLINE | ID: mdl-23073636

ABSTRACT

Enhanced species richness can stimulate the productivity of plant communities; however, its effect on the belowground production of forests has scarcely been tested, despite the role of tree roots in carbon storage and ecosystem processes. Therefore, we tested for the effects of tree species richness on mangrove root biomass: thirty-two 6 m by 6 m plots were planted with zero (control), one, two or three species treatments of six-month-old Avicennia marina (A), Bruguiera gymnorrhiza (B) and Ceriops tagal (C). A monoculture of each species and the four possible combinations of the three species were used, with four replicate plots per treatment. Above- and belowground biomass was measured after three and four years' growth. In both years, the all-species mix (ABC) had significant overyielding of roots, suggesting complementarity mediated by differences in rhizosphere use amongst species. In year four, there was higher belowground than aboveground biomass in all but one treatment. Belowground biomass was strongly influenced by the presence of the most vigorously growing species, A. marina. These results demonstrate the potential for complementarity between fast- and slow-growing species to enhance belowground growth in mangrove forests, with implications for forest productivity and the potential for belowground carbon sequestration.


Subject(s)
Avicennia/growth & development , Biodiversity , Biomass , Rhizophoraceae/growth & development , Ecosystem , Plant Roots/growth & development , Plant Shoots/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...