Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 17(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38998419

ABSTRACT

In the current work, the performance properties of natural-fibre-based thermal insulation materials were examined. For this purpose, three different compositions of natural fibres were prepared: pure sheep wool (SW), wool and industrial hemp (SW/HF) fibres, and pure industrial hemp (HF) fibres. Low-melt bicomponent polylactide (PLA) fibres were used as a binding material. For specimens prepared from natural fibres, the dependence of the thermal conductivity, the tensile strength along and across the direction of product formation, and the short-term water absorption on the density of the specimens and the flammability parameters were determined. In addition, to reduce the water absorption and flammability, the specimens were coated with hydrophobic agents and flame retardants. The obtained research results were also statistically processed. The analysis of the results showed that the thermal conductivity of natural-fibre-based thermal insulation materials varied within the range of 0.0333 ÷ 0.0438 W/(m·K), the tensile strength varied from 2.5 to 130 kPa, the short-term water absorption varied from 0.5 to 8.5 kg/m2, and the water vapour diffusion resistance factor varied from 2.537 to 2.667. It was additionally determined that all the studied products were flammable. The water absorption and flammability values were significantly reduced by the use of hydrophobic agents and flame retardants.

2.
Materials (Basel) ; 17(12)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38930179

ABSTRACT

Loose-fill thermal composite insulation produced from surface-modified wood scobs has been explored as a potential fire-resistant material for building envelopes. This work involves fire resistance behavior comparisons between four coating systems consisting of liquid glass, liquid glass-tung oil, liquid glass-expandable graphite, and liquid glass-tung oil-expandable graphite. The techniques of thermogravimetric and differential thermogravimetric analyses, gross heat combustion via a calorimetric bomb, cone calorimetry, SEM imaging of char residues, and energy dispersive spectrometry for elemental analysis, as well as propensity to undergo continuous smoldering, were implemented. The coating technique resulted in greater thermal stability at a higher temperature range (500-650 °C) of the resulting loose-fill thermal composite insulation, reduced flame-damaged area heights after the exposure of samples at 45° for 15 s and 30 s, with a maximum of 49% decreased gross heat combustion, reduced heat release and total smoke release rates, improved char residue layer formation during combustion and changed smoldering behavior due to the formation of homogeneous and dense carbon layers. The results showed that the highest positive impact was obtained using the liquid glass and liquid glass-expandable graphite system because of the ability of the liquid glass to cover the wood scob particle surface and form a stable and strong expanding carbon layer.

3.
Materials (Basel) ; 17(10)2024 May 14.
Article in English | MEDLINE | ID: mdl-38793387

ABSTRACT

Natural fiber composites have been extensively studied for structural applications, with recent exploration into their potential for various uses. This study investigates the impact of chemical treatments on the properties of Brazilian jute woven fabric/polyester resin composites. Sodium hydroxide, hydrogen peroxide, and peracetic acid were utilized to treat the jute fabrics, followed by resin transfer molding (RTM) to form the composites. Evaluation included water absorption, flexural strength, tensile strength, and short-beam strength. The alkaline treatment induced changes in the chemical composition of the fibers' surface. Chemical treatments resulted in increased flexural and short-beam strength of the composites, with no significant alterations in tensile properties. The hydrogen peroxide treatment exhibited lower water absorption, suggesting its potential as a viable option for enhancing the performance of these composites.

4.
Polymers (Basel) ; 16(2)2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38257004

ABSTRACT

Water-blown biopolyurethane (bioPUR) foams are flammable and emit toxic gases during combustion. Herein, a novel approach suggested by the current study is to use different amounts of lignin waste (LigW), which increases the thermal stability and delays the flame spread and sodium silicate (LG), which has foaming ability at high temperatures and acts as a protective layer during a fire. However, there have been no studies carried out to investigate the synergy between these two materials. Therefore, two different ratios, namely 1/1 and 1/2 of LigW/LG, were used to prepare bioPUR foam composites. The obtained bioPUR foam composites with a 1/2 ratio of LigW/LG exhibited inhibition of flame propagation during the ignitability test by 7 s, increased thermal stability at higher temperatures by 40 °C, reduced total smoke production by 17%, reduced carbon monoxide release by 22%, and increased compressive strength by a maximum of 123% and 36% and tensile strength by a maximum of 49% and 30% at 100 °C and 200 °C, respectively, compared to bioPUR foam composites with unmodified LigW. Additionally, thanks to the sufficient compatibility between the polymeric matrix and LigW/LG particles, bioPUR foam composites were characterised by unchanged or even improved physical and mechanical properties, as well as increased glass transition temperature by 16% compared to bioPUR foam composites with unmodified LigW particles, making them suitable for application as a thermal insulating layer in building envelopes.

5.
Materials (Basel) ; 16(18)2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37763515

ABSTRACT

Prepregs are commonly fabricated with non-renewable petroleum-based materials. To reduce the impact of the manufacturing of these materials and to produce more sustainable prepregs, this research aims to manufacture poly(furfuryl alcohol)/wood veneer prepregs and their posterior molding in laminate composites. For this purpose, the vacuum infusion process was used to impregnate the wood veneers, and compression molding was applied to manufacture three- and four-layer laminate composites. Scanning electronic microscopy was used to evaluate the impregnation. the laminate manufacturing and differential scanning calorimetry were used to predict the shelf-life of the prepregs, Fourier-transform infrared was used to evaluate the induced hydrolysis resistance, and thermogravimetric analysis was used to determine the thermal degradation of the laminates. Moreover, water uptake and flexural, compressive, and tensile properties were evaluated. The kinetic models were effective and showed a shelf life for the laminates of approximately 30 days in storage at -7 °C, which is an interesting result for laminates with lignocellulosic materials. FTIR proved the laminates' excellent resistance to hydrolysis. The water absorption, thermal stability, and mechanical properties did not differ as the amount of wood veneer increased, but these results were up to ~40% higher compared with unidirectional wood laminates found in the literature, which is probably linked to the excellent interface observed with SEM.

6.
Materials (Basel) ; 16(14)2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37512277

ABSTRACT

In the current study, high-strength boards for the construction industry were developed from renewable natural resources, fibrous hemp shives, and corn starch. During the research, the influence of the composition of the mixture, the processing of raw materials, and technological parameters on the operational properties of the board were evaluated. The influence of the binding material and the water content on the properties of the molded boards was evaluated. It was established that the rational amount of starch is 15% of the mass of the shives, and the amount of water is 10%. It has been established that with the proper selection of the forming parameters of the board, it is possible to avoid internal disintegration of the structure due to the water vapor pressure, increase the bending strength, and ensure uniform sintering of the board throughout the entire volume. It was found that additional processing of hemp shives can increase bending strength by more than 40%. Furthermore, during the processing of shives by chemical means, soluble substances are washed out, which reduces the density and thermal conductivity of the shives. Selection of a rational level of compression allowed us to increase the bending strength of the boards by 40%. The assessment of all factors made it possible to obtain boards with a bending strength of 40 MPa. The additives used made it possible to reduce the water absorption of the boards up to 16 times and obtain non-flammable boards. The thermal conductivity of the resulting boards varied from 0.07 to 0.095 W/(m·K). The analysis of macrostructure and microstructure allowed us to evaluate the process of the formation of bonds between hemp shives.

7.
Materials (Basel) ; 16(9)2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37176206

ABSTRACT

The current study presents the results of monitoring the behavior of loose-fill thermal insulating material for buildings made of wood scobs (WS), which were coated with one, two, and three component-based coatings from liquid glass (LG), tung oil (TO), and expandable graphite (EG). The thermal conductivity of samples in the dry state and under normal laboratory conditions, short-term water absorption by partial immersion, surface wettability, and water vapor permeability were evaluated, and regression equations describing the variations in numerical values of specified properties under different amounts of each coating component were presented. It was shown that LG and TO act as hydrophobic layers that, in conjunction, reduce water absorption by a maximum of 274%, have a contact angle equal to 86°, and lower thermal conductivity by 55% in the dry state due to the specifics of the layer formed on the surface of WS. The addition of EG to LG coating resulted in insignificantly changed water absorption and thermal conductivity values, indicating the potential of this material to be used to improve the fire resistance of wood-based composites in the future. The results showed that the three-component layer of LG/TO/EG reduces water absorption by a maximum of 72%, increases thermal conductivity in the dry state by a minimum of 0.4%, and increases the contact angle to 81° at 100 wt.% LG. The changes in water vapor permeability of all compositions were determined to be insignificant.

8.
Polymers (Basel) ; 15(9)2023 May 05.
Article in English | MEDLINE | ID: mdl-37177340

ABSTRACT

Pine seed shells and yerba mate are common wastes leftover from the food and beverage industry. This study presents the development of rigid polyurethane foams (RPUFs) filled with pine seed shells and yerba mate at 5, 10 and 15 wt%. The fillers were characterized for chemical properties using bench chemistry analyses, and the RPUFs were investigated in terms of chemical, morphological, mechanical, thermal and colorimetric characteristics. The main results indicated that yerba mate showed good compatibility with the polyurethane system, probably because its available hydroxyl groups reacted with isocyanate groups to form urethane bonds, producing increases in mechanical and thermal properties. However, pine seed shell did not appear to be compatible. Anisotropy increased slightly, as there was an increase in the percentage of reinforcement. The mechanical properties of the yerba mate reinforced foams proved stable, while there was a loss of overall up to ~50% for all mechanical properties in those reinforced with pine seed shell. Thermal properties were improved up to ~40% for the yerba mate reinforced foams, while those reinforced with pine nuts were stable. It was possible to observe a decrease in the glass transition temperature (Tg) of ~-5 °C for the yerba mate reinforced foams and ~-14 °C for the pine seed shell reinforced ones.

9.
Materials (Basel) ; 16(5)2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36903099

ABSTRACT

Textile waste is formed in various stages, from the preparation of raw materials to the utilisation of textile products. One of the sources of textile waste is the production of woollen yarns. During the production of woollen yarns, waste is generated during the mixing, carding, roving, and spinning processes. This waste is disposed of in landfills or cogeneration plants. However, there are many examples of textile waste being recycled and new products being produced. This work deals with acoustic boards made from waste from the production of woollen yarns. This waste was generated in various yarn production processes up to the spinning stage. Due to the parameters, this waste was not suitable for further use in the production of yarns. During the work, the composition of waste from the production of woollen yarns was examined-namely, the amount of fibrous and nonfibrous materials, the composition of impurities, and the parameters of the fibres themselves. It was determined that about 74% of the waste is suitable for the production of acoustic boards. Four series of boards with different densities and different thicknesses were made with waste from the production of woollen yarns. The boards were made in a nonwoven line using carding technology to obtain semi-finished products from the individual layers of combed fibres and thermal treatment of the prepared semi-finished product. The sound absorption coefficients in the sound frequency range between 125 and 2000 Hz were determined for the manufactured boards, and the sound reduction coefficients were calculated. It was found that the acoustic characteristics of soft boards made from woollen yarn waste are very similar to those of classic boards or sound insulation products made from renewable resources. At a board density of 40 kg/m3, the value of the sound absorption coefficient varied from 0.4 to 0.9, and the noise reduction coefficient reached 0.65.

10.
Materials (Basel) ; 16(6)2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36984108

ABSTRACT

When developing new innovative building materials, their performance characteristics as well as their environmental friendliness are important. It is difficult to produce a fully ecological material for building envelopes, because there is a lack of ecological binding materials on the market, good binding materials are very expensive, and cheaper ones have poorer adhesive properties and performance characteristics. In this work, natural organic sapropel was used as an ecological binder. Before use, an organic sapropel was additionally mechanically activated. Its activation efficiency was evaluated on the basis of consistency and tensile strength. Sapropel activation increased its consistency from 112 to 168 mm and its tensile strength from 466 to 958 kPa. Wood processing waste was used as a filler for the thermal insulation biocomposite. Additionally, the wood waste was chopped to regulate the density and main performance properties of the biocomposite. The density of the biocomposite was also regulated using different amounts of sapropel and the degree of compaction of the composite mixture. In this work, the influence of the amount of sapropel, the level of compression of the biocomposite mixture, and the size of the wood waste particles on the thermal conductivity and compressive stress of the biocomposite was analyzed. It was found that the compression level had the greatest influence on both the compressive stress and thermal conductivity, up to 12 times and 43.3%, respectively.

11.
Microorganisms ; 11(2)2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36838442

ABSTRACT

In this study, the performance characteristics of hemp shives impregnated with linseed oil and tung tree oil (HS)- and corn starch (CS)-based biocomposites containing flame retardants were evaluated before and after treatment with the mixture of bacterium Pseudomonas putida and fungus Rhizopus oryzae. Enzymatic activities and physical-mechanical properties such as water absorption, thickness swelling, compressive strength, and thermal conductivity were tested to evaluate the suitability of selected composites for thermal insulation purposes. In addition, electron microscopy was used to investigate the impact of microorganisms on the microstructure of the material. It was determined that the type of oil used for impregnation significantly affects the properties of biocomposites after 6 months of incubation with mixture of bacterium P. putida and fungus Rh. oryzae. Biocomposites impregnated with linseed oil and after treatment with a mixture of microorganisms had cellulase activity of 25 U/mL, endo ß-1-4-glucanase activity of 26 U/mL, lipase activity of 101 U/mL, only a 10% decrease in compressive strength, 50% higher short-term water absorption, unchanged swelling in thickness, and slightly decreased thermal conductivity compared to control biocomposites. At the same time, biocomposites with tung tree oil had a much more pronounced deterioration of the properties tested, cellulase activity of 28 U/mL, endo ß-1-4-glucanase activity of 37 U/mL, lipase activity of 91 U/mL, two times lower compressive strength and two times higher short-term water absorption, 2.5 times greater thickness swelling, and a slightly increased thermal conductivity. We conclude that linseed oil provides better protection against the action of microorganisms compared to impregnation with tung tree oil.

12.
Polymers (Basel) ; 15(4)2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36850102

ABSTRACT

In the current study, biopolyurethane foam was modified with 2.5-10 wt.% lignin waste (LigW) and liquid glass (LG)-modified LigW particles at different LigW/LG ratios-1:1 and 1:2-and their impact on performance characteristics-i.e., rheology, foaming times, apparent density, thermal conductivity before and after aging, dimensional stability at ambient and elevated conditions, compressive and tensile strengths, short-term water absorption by partial immersion, and water vapor permeability-was determined and evaluated. Structural analysis was implemented and structural parameters were taken into consideration as well. During the study, it was determined that 2.5-10 wt.% particles at the LigW/LG ratio of 1:2 showed a superior impact on the physical and mechanical properties of bioPUR foams. The apparent density only insignificantly increased and was in a density range suitable for commercially available polyurethanes. For particles at 10 wt.% and LigW/LG ratio of 1:1, the thermal conductivity value improved by 3.2%, the compressive strength increased by 153%, while the tensile strength improved by 23.5%, indicating sufficient interfacial adhesion between the filler and polymer matrix. Moreover, the short-term water absorption by partial immersion remained almost unchanged, while the water vapour diffusion resistance factor improved from 43 to 48. Additionally, the incorporation of LigW/LG 1:1 and LigW/LG 1:2 particles made it possible to obtain dimensionally and structurally stable closed-cell bioPUR foams for possible application as thermal insulation in building envelopes.

13.
Polymers (Basel) ; 15(2)2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36679214

ABSTRACT

Four imidazolium-based ionic liquids (IL; 1-butyl-3-methylimidazolium chloride, 1-carboxymethyl-3-methylimidazolium chloride, 1,3-dicarboxymethylimidazolium chloride and 1-(2-hydroxyethyl) -3-methylimidazolium chloride) were tested as compatibilizers of microcrystalline cellulose (MCC). Subsequently, ethanolic IL solutions were prepared; MCC was mixed, and the mixtures were left to evaporate the ethanol at ambient conditions. These modified MCC were characterized and applied as reinforcements (5.0 and 10 phr) in an epoxy resin aiming to manufacture biobased composites with enhanced performances. The IL did not significantly modify the morphological and structural characteristics of such reinforcements. Regarding the thermal stability, the slight increase was associated with the MCC-IL affinity. The IL-modified MCC-epoxy composites presented improved mechanical responses, such as flexural strength (≈22.5%) and toughness behavior (≈18.6%), compared with pure epoxy. Such improvement was also obtained for the viscoelastic response, where the storage modulus at the glassy state depended on the MCC amount and IL type. These differences were associated with stronger hydrogen bonding between IL and epoxy hardener or the IL with MCC, causing a "bridging" effect between MCC and epoxy matrix.

14.
Materials (Basel) ; 15(21)2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36363139

ABSTRACT

In this paper, we undertake a detailed analysis of the active and passive deformation of expanded polystyrene (EPS), which is used as a thermal insulating layer in building partitions, under short-term compressive loading. The values of residual strain in 10-40 kg/m3 density EPS after monotonically increasing loading under active deformations of 20%, 30%, 40%, 50%, and 60% with the following complete removal are determined. These values are a physical sign of the elastic-plastic state of EPS. It has been shown that the final destruction of cells takes place in EPS when the active strain reaches 50%. Empirical equations are proposed to estimate the residual strain of EPS based on density with determination coefficients varying from 0.744 to 0.986 at a confidence level of 90%. Moreover, graphical interpretations with regression equations for residual strain dependence on density and compressive strength, as well as density and active strain, were proposed with determination coefficients equal to 0.779 and 0.717, respectively.

15.
Polymers (Basel) ; 14(21)2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36365537

ABSTRACT

Polyurethane (PUR) foams are some of the most promising thermal insulating materials because of their high flammability, but further applications are limited. Therefore, the development of flame-retardant materials with sufficient strength characteristics, water resistance, and low thermal insulating properties is of great importance to the modern building industry. This study evaluates the possibility of a vacuum-based liquid glass (LG) infusion into bio-based fillers, in this case, sunflower press cake (SFP) particles, to improve the mechanical performance, water absorption, thermal insulation, ignitability, thermal stability, and flame retardancy of the resulting polyurethane (PUR) foam composites. The main findings show that LG slightly improves the thermal stability and highly contributes to the ignitability and flame retardancy of the resulting products. Most importantly, from 10 wt.% to 30 wt.%, the SFP/LG filler reduces the thermal conductivity and water absorption values by up to 20% and 50%, respectively, and increases the compressive strength by up to 110%. The results obtained indicate that the proposed SFP/LG filler-modified PUR foam composites are suitable for applications as thermal insulation materials in building structures.

16.
Microorganisms ; 10(9)2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36144432

ABSTRACT

Biocomposite boards (BcBs) composed of hemp shives and corn starch are known as thermal insulating or structural building materials. Therefore, they must be stable during exploitation. However, BcBs are exposed to microorganisms present in the environment, and it is of great interest to investigate the biodegradation behaviour of these materials. This work identified microorganisms growing on BcBs that contain either Flovan CGN or expandable graphite as flame retardants and selected fungi such as Rhizopus oryzae and Aspergillus fumigatus to test the way they affect the materials of interest. For this purpose, the enzymatic activity of cellulases and amylases produced by these organisms were determined. In addition, the apparent density as well as compressive strength of the affected boards were evaluated. The results showed that apparent density and compressive strength deteriorated in BcB composition with the Flovan CGN flame retardant. At the same time, the level of deterioration was lower when the expandable graphite was used, suggesting that it also acts as an antimicrobial agent. A scanning electronic microscopy analysis was employed to monitor the growth of microorganisms in the BcBs. Such analysis demonstrated that, regardless of BcB composition, fungi easily penetrate into the middle layers of the material.

17.
Materials (Basel) ; 16(1)2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36614688

ABSTRACT

Sandwich panels (SP) are very promising components for structures as they ally high levels of specific stiffness and strength. Civil, marine and automotive industries are some examples of the sectors that use SPs frequently. This work demonstrates the potential of manufacturing Z-pin-reinforced foam core SPs, using a design strategy that indicated optimal values for both pin position and angle, keeping the same pin diameter as determined in a previous study. A simple search algorithm was applied to optimize each design, ensuring maximum flexural stiffness. Designs using optimal pin position, optimal pin angle and optimal values for both parameters are herein investigated using numerical and experimental approaches. The optimal pin position yielded an increase in flexural stiffness of around 8.0% when compared to the non-optimized design. In this same comparison, the optimal pin angle by itself increased the flexural stiffness by about 63.0%. Besides, the highest increase in the maximum load was found for those composites, molded with optimized levels of pin position and pin angle, which synergistically contributed to this result. All results were demonstrated with numerical and experimental results and there was a good agreement between them.

18.
Materials (Basel) ; 14(19)2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34639873

ABSTRACT

In the current study, rigid polyurethane foam (PUR) was modified with 10-30 wt.% sunflower press cake (SFP) filler, and its effect on performance characteristics-i.e., rheology, characteristic foaming times, apparent density, thermal conductivity, compressive strength parallel and perpendicular to the foaming directions, tensile strength, and short-term water absorption by partial immersion-was evaluated. Microstructural and statistical analyses were implemented as well. During the study, it was determined that 10-20 wt.% SFP filler showed the greatest positive impact. For instance, the thermal conductivity value improved by 9% and 17%, respectively, while mechanical performance, i.e., compressive strength, increased by 11% and 28% in the perpendicular direction and by 43% and 67% in the parallel direction. Moreover, tensile strength showed 49% and 61% increments, respectively, at 10 wt.% and 20 wt.% SFP filler. Most importantly, SFP filler-modified PUR foams were characterised by two times lower water absorption values and improved microstructures with a reduced average cell size and increased content in closed cells.

19.
Materials (Basel) ; 14(18)2021 Sep 16.
Article in English | MEDLINE | ID: mdl-34576573

ABSTRACT

The study analyses rigid polyurethane (PUR) foam modified with 10-30 wt.% sunflower press cake (SFP) and liquid glass-impregnated sunflower press cake (LG-SFP) particles and their impact on performance characteristics of PUR foams-foaming behaviour, rheology, thermal conductivity, compressive strength parallel and perpendicular to the foaming directions, tensile strength, dimensional stability, short-term water absorption by partial immersion, and thermal stability. Even though the dynamic viscosity and apparent density were increased for SFP and LG-SFP formulations, thermal conductivity values improved by 17% and 10%, respectively, when 30 wt.% of particles were incorporated. The addition of SFP and LG-SFP particles resulted in the formation of more structurally and dimensionally stable PUR foams with a smaller average cell size and a greater content of closed cells. At 30 wt.% of SFP and LG-SFP particles, compressive strength increased by 114% and 46% in the perpendicular direction, respectively, and by 71% and 67% in the parallel direction, respectively, while tensile strength showed an 89% and 85% higher performance at 30 wt.% SFP and LG-SFP particles loading. Furthermore, short-term water absorption for all SFP and LG-SFP modified PUR foam formulations was almost two times lower compared to the control foam. SFP particles reduced the thermal stability of modified PUR foams, but LG-SFP particles shifted the thermal decomposition temperatures towards higher ones.

20.
Materials (Basel) ; 14(13)2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34209539

ABSTRACT

Polyurethane (PUR) composites reinforced with 1, 2, and 5 wt.% of apricot filler modified with casein were synthesized in the following study. The impact of 1, 2, and 5 wt.% of casein/apricot filler on the cellular structure and physico-mechanical performances of reinforced PUR composites were determined. It was found that the incorporation of 1 and 2 wt.% of casein/apricot filler resulted in the production of PUR composites with improved selected physical, thermal, and mechanical properties, while the addition of 5 wt.% of casein/apricot filler led to some deterioration of their physico-mechanical performance. The best results were obtained for PUR composites reinforced with 2 wt.% of casein/apricot filler. Those composites were characterized by a uniform structure and a high content of closed cells. Compared with the reference foam, the incorporation of 2 wt.% of casein/apricot filler resulted in improvement in compressive strength, flexural strength, impact strength, and dynamic mechanical properties-such as glass transition temperature and storage modulus. Most importantly, PUR composites showed better fire resistance and thermal stability due to the good thermal performance of casein. The main aim of this article is to determine the influence of the natural combination of the apricot filler and casein on the mechanical properties and flammability of the obtained composites.

SELECTION OF CITATIONS
SEARCH DETAIL
...