Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(3)2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38339112

ABSTRACT

A series of hydrazones, azoles, and azines bearing a 4-dimethylaminophenyl-5-oxopyrrolidine scaffold was synthesized. Their cytotoxic effect against human pancreatic carcinoma Panc-1 and triple-negative breast cancer MDA-MB-231 cell lines was established by MTT assay. Pyrrolidinone derivatives 3c and 3d, with incorporated 5-chloro and 5-methylbenzimidazole fragments; hydrazone 5k bearing a 5-nitrothien-2-yl substitution; and hydrazone 5l with a naphth-1-yl fragment in the structure significantly decreased the viability of both cancer cell lines. Compounds 3c and 5k showed the highest selectivity, especially against the MDA-MB-231 cancer cell line. The EC50 values of the most active compound 5k against the MDA-MB231 cell line was 7.3 ± 0.4 µM, which were slightly higher against the Panc-1 cell line (10.2 ± 2.6 µM). Four selected pyrrolidone derivatives showed relatively high activity in a clonogenic assay. Compound 5k was the most active in both cell cultures, and it completely disturbed MDA-MB-231 cell colony growth at 1 and 2 µM and showed a strong effect on Panc-1 cell colony formation, especially at 2 µM. The compounds did not show an inhibitory effect on cell line migration by the 'wound-healing' assay. Compound 3d most efficiently inhibited the growth of Panc-1 spheroids and reduced cell viability in MDA-MB-231 spheroids. Considering these different activities in biological assays, the selected pyrrolidinone derivatives could be further tested to better understand the structure-activity relationship and their mechanism of action.


Subject(s)
Antineoplastic Agents , Pancreatic Neoplasms , Triple Negative Breast Neoplasms , Humans , Antineoplastic Agents/therapeutic use , Structure-Activity Relationship , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Cell Proliferation , Hydrazones/pharmacology , Pyrrolidinones/pharmacology , Cell Line, Tumor , Triple Negative Breast Neoplasms/drug therapy
2.
Pharmaceuticals (Basel) ; 15(8)2022 Aug 06.
Article in English | MEDLINE | ID: mdl-36015119

ABSTRACT

The 1-(4-acetamidophenyl)-5-oxopyrrolidine carboxylic acid was applied for synthesizing derivatives bearing azole, diazole, and hydrazone moieties in the molecule. Modification of an acetamide fragment to the free amino group afforded compounds with two functional groups, which enabled to provide a series of 4-substituted-1-(4-substituted phenyl)pyrrolidine-2-ones. The resulted compounds 2 and 4-22 were subjected to the in vitro anticancer and antimicrobial activity determination. The compounds 18-22 exerted the most potent anticancer activity against A549 cells. Furthermore, compound 21 bearing 5-nitrothiophene substituents demonstrated promising and selective antimicrobial activity against multidrug-resistant Staphylococcus aureus strains, including linezolid and tedizolid-resistant S. aureus. These results demonstrate that 5-oxopyrolidine derivatives are attractive scaffolds for the further development of anticancer and antimicrobial compounds targeting multidrug-resistant Gram-positive pathogens.

SELECTION OF CITATIONS
SEARCH DETAIL
...