Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 17(49): e2103535, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34708553

ABSTRACT

LiS batteries are considered a promising energy storage system owing to the great abundance of sulfur and its high specific capacity. Polysulfide shuttling and sluggish reaction kinetics in sulfur cathodes significantly degrade the cycle life of LiS batteries. A modified method is employed to create defects in carbon nanotubes (CNTs), anchoring polysulfides, and accelerating electrochemical reactions. The defect-rich CNTs (D-CNT) enable dramatic improvement in both cycling and rate performance. A specific capacity of 600 mAh g-1 with a current density of 0.5 C is achieved after 400 cycles, and even at a very high current density (5.0 C), a specific capacity of 434 mAh g-1 is observed. Cycling stability up to 1000 cycles is also achieved under the conditions of high sulfur loading and lean electrolyte. Theoretical calculations revealed that the improvement is mainly attributable to the electronic structure of defect-rich carbon, which has higher binding energy with polysulfides because of the upshift of the p-band center. Furthermore, rotating disk electrode measurements demonstrate that the defect-rich carbon can accelerate the polysulfide conversion process. It is anticipated that this new design strategy can be the starting point for mediator-like carbon materials with good conductivity and high catalytic activity for LiS batteries.

2.
ACS Appl Mater Interfaces ; 12(5): 5958-5967, 2020 Feb 05.
Article in English | MEDLINE | ID: mdl-31922398

ABSTRACT

The practical application of Li-S batteries is hampered because of their poor cycling stability caused by electrolyte-dissolved lithium polysulfides. Dual functionalities such as strong chemical adsorption stability and high conductivity are highly desired for an ideal host material for the sulfur-based cathode. Herein, a uniform polypyrrole layer-coated sulfur/graphene aerogel composite is designed and synthesized using a novel vapor-phase deposition method. The polypyrrole layer simultaneously acts as a host and an adsorbent for efficient suppression of polysulfide dissolution through strong chemical interaction. The density functional theory calculations reveal that the polypyrrole could trap lithium polysulfides through stronger bonding energy. In addition, the deflation of sulfur/graphene hydrogel during the vapor-phase deposition process enhances the contact of sulfur with matrices, resulting in high sulfur utilization and good rate capability. As a result, the synthesized polypyrrole-coated sulfur/graphene aerogel composite delivers specific discharge capacities of 1167 and 409.1 mA h g-1 at 0.2 and 5 C, respectively. Moreover, the composite can maintain a capacity of 698 mA h g-1 at 0.5 C after 500 cycles, showing an ultraslow decay rate of 0.03% per cycle.

3.
ACS Nano ; 11(9): 9048-9056, 2017 09 26.
Article in English | MEDLINE | ID: mdl-28850776

ABSTRACT

Due to its high theoretical capacity, high energy density, and easy availability, the lithium-sulfur (Li-S) system is considered to be the most promising candidate for electric and hybrid electric vehicle applications. Sulfur/carbon cathode in Li-S batteries still suffers, however, from low Coulombic efficiency and poor cycle life when sulfur loading and the ratio of sulfur to carbon are high. Here, we address these challenges by fabricating a sulfur/carboxylated-graphene composite using a reverse (water-in-oil) microemulsion technique. The fabricated sulfur-graphene composite cathode, which contains only 6 wt % graphene, can dramatically improve the cycling stability as well as provide high capacity. The electrochemical performance of the sulfur-graphene composite is further enhanced after loading into a three-dimensional heteroatom-doped (boron and nitrogen) carbon-cloth current collector. Even at high sulfur loading (∼8 mg/cm2) on carbon cloth, this composite showed 1256 mAh/g discharge capacity with more than 99% capacity retention after 200 cycles.

4.
Adv Mater ; 29(48)2017 Dec.
Article in English | MEDLINE | ID: mdl-28620972

ABSTRACT

Electrolytes, which are a key component in electrochemical devices, transport ions between the sulfur/carbon composite cathode and the lithium anode in lithium-sulfur batteries (LSBs). The performance of a LSB mostly depends on the electrolyte due to the dissolution of polysulfides into the electrolyte, along with the formation of a solid-electrolyte interphase. The selection of the electrolyte and its functionality during charging and discharging is intricate and involves multiple reactions and processes. The selection of the proper electrolyte, including solvents and salts, for LSBs strongly depends on its physical and chemical properties, which is heavily controlled by its molecular structure. In this review, the fundamental properties of organic electrolytes for LSBs are presented, and an attempt is made to determine the relationship between the molecular structure and the properties of common organic electrolytes, along with their effects on the LSB performance.

5.
ACS Appl Mater Interfaces ; 8(38): 25251-60, 2016 Sep 28.
Article in English | MEDLINE | ID: mdl-27529563

ABSTRACT

Ternary composites with porous sulfur/dual-carbon architectures have been synthesized by a single-step spray-pyrolysis/sublimation technique, which is an industry-oriented method that features continuous fabrication of products with highly developed porous structures without the need for any further treatments. A double suspension of commercial sulfur and carbon scaffolding particles was dispersed in ethanol/water solution and sprayed at 180 °C using a spray pyrolysis system. In the resultant composites, the sulfur particles were subjected to an ultrashort sublimation process, leading to the development of a highly porous surface, and were meanwhile coated with amorphous carbon, obtained through the pyrolysis of the ethanol, which acts as an adhesive interface to bind together the porous sulfur with the scaffolding carbon particles, to form a ternary composite architecture. This material has an effective conducting-carbon/sulfur-based matrix and interconnected open pores to reduce the diffusion paths of lithium ions, buffer the sulfur volumetric expansion, and absorb electrolyte and polysulfides. Because of the unique chemistry and the structure, the composites show stable cycling performance for 200 cycles and good rate capability of 520 mAh g(-1) at 2 C. This advanced spray-pyrolysis/sublimation method is easy to scale up and shows great potential for commercialization of lithium/sulfur batteries.

6.
Chemistry ; 21(28): 10061-9, 2015 Jul 06.
Article in English | MEDLINE | ID: mdl-26012862

ABSTRACT

Small-grained elemental sulfur is precipitated from sodium thiosulfate (Na2 S2 O3 ) in a carbon-containing oxalic acid (HOOC-COOH) solution through a novel spray precipitation method. Surface area analysis, elemental mapping, and transmission electron micrographs revealed that the spray-precipitated sulfur particles feature 11 times higher surface area compared to conventional precipitated sulfur, with homogeneous distribution in the carbon. Moreover, the scanning electron micrographs show that these high-surface-area sulfur particles are firmly adhered to and covered by carbon. This precipitated S-C composite exhibits high discharge capacity with about 75 % capacity retention. The initial discharge capacity was further improved to 1444 mA h g(-1) by inserting a free-standing single-walled carbon nanotube layer in between the cathode and the separator. Moreover, with the help of the fixed capacity charging technique, 91.6 % capacity retention was achieved.

SELECTION OF CITATIONS
SEARCH DETAIL
...