Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
J Phys Chem A ; 122(45): 8819-8827, 2018 Nov 15.
Article in English | MEDLINE | ID: mdl-30345750

ABSTRACT

Computational fluid dynamics (CFD) simulations and isothermal approximation were applied for the interpretation of experimental measurements of the C10H7Br pyrolysis efficiency in the high-temperature microreactor and of the pressure drop in the flow tube of the reactor. Applying isothermal approximation allows the derivation of analytical relationships between the kinetic, gas flow, and geometrical parameters of the microreactor, which, along with CFD simulations, accurately predict the experimental observations. On the basis of the obtained analytical relationships, a clear strategy for measuring rate coefficients of (pseudo) first-order bimolecular and unimolecular reactions using the microreactor was proposed. The pressure- and temperature-dependent rate coefficients for the C10H7Br pyrolysis calculated using variable reaction coordinate transition state theory were invoked to interpret the experimental data on the pyrolysis efficiency.

2.
Chem Commun (Camb) ; 52(4): 741-4, 2016 Jan 14.
Article in English | MEDLINE | ID: mdl-26564002

ABSTRACT

Urea is considered a fundamental building block in prebiotic chemistry. Its formation on early Earth has not yet been explained satisfactorily and exogenous delivery has been considered. We report on the synthesis along with the first online and in situ identification of urea after exposing inorganic ices to ionizing radiation.


Subject(s)
Ice/analysis , Urea/chemical synthesis , Diffusion , Extraterrestrial Environment , Meteoroids , Radiation , Spectrum Analysis , Urea/chemistry
3.
J Phys Chem A ; 118(36): 7715-24, 2014 Sep 11.
Article in English | MEDLINE | ID: mdl-25116460

ABSTRACT

The reaction of ground-state cyano radicals, CN(X(2)Σ(+)), with the simplest polyene, 1,3-butadiene (C4H6(X(1)Ag)), is investigated to explore probable routes and feasibility to form pyridine at ultralow temperatures. The isomerization and dissociation channels for each of the seven initial collision complexes are characterized by utilizing the unrestricted B3LYP/cc-pVTZ and the CCSD(T)/cc-pVTZ calculations. With facilitation of RRKM rate constants, through ab initio paths composed of 7 collision complexes, 331 intermediates, 62 hydrogen atom, 71 hydrogen molecule, and 3 hydrogen cyanide dissociated products, the most probable paths at collision energies up to 10 kcal/mol, and thus the reaction mechanism, are determined. Subsequently, the corresponding rate equations are solved that the concentration evolutions of collision complexes, intermediates, and products versus time are obtained. As a result, the final products and yields are determined. The low-energy routes for the formation of most thermodynamically stable product, pyridine, are identified. This study, however, predicts that seven collision complexes would produce predominately 1-cyano-1,3-butadiene, CH2CHCHCHCN (p2) plus atomic hydrogen via the collision complex c1(CH2CHCHCH2CN) and intermediate i2(CH2CHCH2CHCN), with a very minor amount of pyridine. Our scheme also effectively excludes the presence of 2-cyano-1,3-butadiene, which has energy near-degenerate to 1-cyano-1,3-butadiene, as supported by experimental findings.

4.
Chem Soc Rev ; 43(8): 2701-13, 2014 Apr 21.
Article in English | MEDLINE | ID: mdl-24418936

ABSTRACT

The classification of chemical reactions based on shared characteristics is at the heart of the chemical sciences, and is well exemplified by Langmuir's concept of isovalency, in which 'two molecular entities with the same number of valence electrons have similar chemistries'. Within this account we further investigate the ramifications of the isovalency of four radicals with the same X(2)Σ(+) electronic structure - cyano (CN), boron monoxide (BO), silicon nitride (SiN), and ethynyl (C2H), and their reactions with simple prototype hydrocarbons acetylene (C2H2) and ethylene (C2H4). The fact that these four reactants own the same X(2)Σ(+) electronic ground state should dictate the outcome of their reactions with prototypical hydrocarbons holding a carbon-carbon triple and double bond. However, we find that other factors come into play, namely, atomic radii, bonding orbital overlaps, and preferential location of the radical site. These doublet radical reactions with simple hydrocarbons play significant roles in extreme environments such as the interstellar medium and planetary atmospheres (CN, SiN and C2H), and combustion flames (C2H, BO).

5.
J Org Chem ; 77(19): 8574-80, 2012 Oct 05.
Article in English | MEDLINE | ID: mdl-22954358

ABSTRACT

The gas-phase reaction between the silicon nitride radical (SiN) and the prototypical olefin--ethylene--is investigated experimentally and theoretically for the first time. Silicon nitride (SiN) and the cyano radical (CN) are isoelectronic; however, their chemical reactivities and structures are drastically different from each other. Through the use of the cross molecular beam technique, we were able to study the notoriously refractory silicon nitride radical in reaction with ethylene under single-collision conditions. We investigated the similarities and also the distinct differences with the cyano radical-ethylene system. We find that the silicon nitride radical bonds by the nitrogen atom to the double bond of ethylene; in comparison, the cyano radical adds via its carbon atom. The silicon nitride addition is barrierless, forming a long-lived SiNCH(2)CH(2) collision complex, which is also able to isomerize via a hydrogen shift to the SiNCHCH(3) intermediate. Both isomers can emit a hydrogen atom via tight transition states to form the silaisocyanoethylene (SiNC(2)H(3)) molecule in an overall exoergic reaction. This presents the very first experiment in which the silaisocyanoethylene molecule--a member of the silaisocyanide family--has been formed via a directed synthesis under gas-phase single-collision conditions. In comparison with the isoelectronic cyano-ethylene system, the cyanoethylene (C(2)H(3)CN) isomer is formed. Therefore, the replacement of a single carbon atom by an isovalent silicon atom, i.e. shifting from the cyano (CN) to the silicon nitride (SiN) radical, has a dramatic influence not only on the reactivity with ethylene (carbon atom versus nitrogen atom addition) but also on the final reaction products. In the reactions of ethylene with silicon nitride and the cyano radical, the silaisonitrile over the silanitrile and the nitrile over the isonitrile reaction products are favored, respectively. This reaction provides rare experimental data for investigating the chemistry of bimolecular reactions of silicon nitride diatomics in chemical vapor deposition techniques and interstellar environments.

6.
J Phys Chem A ; 116(17): 4248-58, 2012 May 03.
Article in English | MEDLINE | ID: mdl-22497458

ABSTRACT

The crossed beam reactions of the phenyl radical (C(6)H(5), X(2)A(1)) with 1,3-butadiene (C(4)H(6), X(1)A(g)) and D6-1,3-butadiene (C(4)D(6), X(1)A(g)) as well as of the D5-phenyl radical (C(6)D(5), X(2)A(1)) with 2,3-D2-1,3-butadiene and 1,1,4,4-D4-1,3-butadiene were carried out under single collision conditions at collision energies of about 55 kJ mol(-1). Experimentally, the bicyclic 1,4-dihydronaphthalene molecule was identified as a major product of this reaction (58 ± 15%) with the 1-phenyl-1,3-butadiene contributing 34 ± 10%. The reaction is initiated by a barrierless addition of the phenyl radical to the terminal carbon atom of the 1,3-butadiene (C1/C4) to form a bound intermediate; the latter underwent hydrogen elimination from the terminal CH(2) group of the 1,3-butadiene molecule leading to 1-phenyl-trans-1,3-butadiene through a submerged barrier. The dominant product, 1,4-dihydronaphthalene, is formed via an isomerization of the adduct by ring closure and emission of the hydrogen atom from the phenyl moiety at the bridging carbon atom through a tight exit transition state located about 31 kJ mol(-1) above the separated products. The hydrogen atom was found to leave the decomposing complex almost parallel to the total angular momentum vector and perpendicularly to the rotation plane of the decomposing intermediate. The defacto barrierless formation of the 1,4-dihydronaphthalene molecule involving a single collision between a phenyl radical and 1,3-butadiene represents an important step in the formation of polycyclic aromatic hydrocarbons (PAHs) and their partially hydrogenated counterparts in combustion and interstellar chemistry.


Subject(s)
Butadienes/chemistry , Naphthalenes/chemical synthesis , Free Radicals/chemistry , Naphthalenes/chemistry , Quantum Theory
7.
Phys Chem Chem Phys ; 14(9): 2997-3003, 2012 Mar 07.
Article in English | MEDLINE | ID: mdl-22281819

ABSTRACT

The crossed molecular beam reactions of the phenyl and D5-phenyl radical with diacetylene (C(4)H(2)) was studied under single collision conditions at a collision energy of 46 kJ mol(-1). The chemical dynamics were found to be indirect and initiated by an addition of the phenyl/D5-phenyl radical with its radical center to the C1-carbon atom of the diacetylene reactant. This process involved an entrance barrier of 4 kJ mol(-1) and lead to a long lived, bound doublet radical intermediate. The latter emitted a hydrogen atom directly or after a few isomerization steps via tight exit transition states placed 20-21 kJ mol(-1) above the separated phenyldiacetylene (C(6)H(5)CCCCH) plus atomic hydrogen products. The overall reaction was determined to be exoergic by about 49 ± 26 kJ mol(-1) and 44 ± 10 kJ mol(-1) as determined experimentally and computationally, thus representing a feasible pathway to the formation of the phenyldiacetylene molecule in combustion flames of hydrocarbon fuel.

8.
Phys Chem Chem Phys ; 14(2): 720-9, 2012 Jan 14.
Article in English | MEDLINE | ID: mdl-22116319

ABSTRACT

We conducted the crossed molecular beams reactions of the phenyl and D5-phenyl radicals with propylene together with its partially deuterated reactants at collision energies of ~45 kJ mol(-1) under single collision conditions. The scattering dynamics were found to be indirect and were mainly dictated by an addition of the phenyl radical to the sterically accessible CH(2) unit of the propylene reactant. The resulting doublet radical isomerized to multiple C(9)H(11) intermediates, which were found to be long-lived, decomposing in competing methyl group loss and atomic hydrogen loss pathways with the methyl group loss leading to styrene (C(6)H(5)C(2)H(3)) and the atomic hydrogen loss forming C(9)H(10) isomers cis/trans 1-phenylpropene (CH(3)CHCHC(6)H(5)) and 3-phenylpropene (C(6)H(5)CH(2)C(2)H(3)). Fractions of the methyl versus hydrogen loss channels of 68 ± 16% : 32 ± 10% were derived experimentally, which agrees nicely with RRKM theory. As the collision energy rises to 200 kJmol(-1), the contribution of the methyl loss channel decreases sharply to typically 25%; the decreased importance of the methyl group loss channel was also demonstrated in previous crossed beam experiments conducted at elevated collision energies of 130-193 kJ mol(-1). The presented work highlights the interesting differences of the branching ratios with rising collision energies in the reaction dynamics of phenyl radicals with unsaturated hydrocarbons related to combustion processes. The facility of forming styrene, a common molecule found in combustion against the elusiveness of forming the cyclic indane molecule demonstrates the need to continue to explore the potential surfaces through the combinative single collision experiment and electronic structure calculations.

9.
J Phys Chem A ; 115(37): 10251-8, 2011 Sep 22.
Article in English | MEDLINE | ID: mdl-21823627

ABSTRACT

The crossed molecular beams reaction of dicarbon molecules, C(2)(X(1)Σ(g)(+)/a(3)Π(u)) with vinylacetylene was studied under single collision conditions at a collision energy of 31.0 kJ mol(-1) and combined with electronic structure calculations on the singlet and triplet C(6)H(4) potential energy surfaces. The investigations indicate that both reactions on the triplet and singlet surfaces are dictated by a barrierless addition of the dicarbon unit to the vinylacetylene molecule and hence indirect scattering dynamics via long-lived C(6)H(4) complexes. On the singlet surface, ethynylbutatriene and vinyldiacetylene were found to decompose via atomic hydrogen loss involving loose exit transition states to form exclusively the resonantly stabilized 1-hexene-3,4-diynyl-2 radical (C(6)H(3); H(2)CCCCCCH; C(2v)). On the triplet surface, ethynylbutatriene emitted a hydrogen atom through a tight exit transition state located about 20 kJ mol(-1) above the separated stabilized 1-hexene-3,4-diynyl-2 radical plus atomic hydrogen product; to a minor amount (<5%) theory predicts that the aromatic 1,2,3-tridehydrobenzene molecule is formed. Compared to previous crossed beams and theoretical investigations on the formation of aromatic C(6)H(x) (x = 6, 5, 4) molecules benzene, phenyl, and o-benzyne, the decreasing energy difference from benzene via phenyl and o-benzyne between the aromatic and acyclic reaction products, i.e., 253, 218, and 58 kJ mol(-1), is narrowed down to only ∼7 kJ mol(-1) for the C(6)H(3) system (aromatic 1,2,3-tridehydrobenzene versus the resonantly stabilized free radical 1-hexene-3,4-diynyl-2). Therefore, the C(6)H(3) system can be seen as a "transition" stage among the C(6)H(x) (x = 6-1) systems, in which the energy gap between the aromatic isomer (x = 6, 5, 4) is reduced compared to the acyclic isomer as the carbon-to-hydrogen ratio increases and the acyclic isomer becomes more stable (x = 1, 2).

10.
Phys Chem Chem Phys ; 13(35): 15766-73, 2011 Sep 21.
Article in English | MEDLINE | ID: mdl-21687881

ABSTRACT

The exposure of icy Kuiper belt objects (KBOs) by ionizing radiation was simulated in this case of exposing carbon monoxide-nitrogen (CO-N(2)) ices by energetic electrons. The radiation-induced chemical processing was monitored on-line and in situ via FTIR spectroscopy and quadrupole mass spectrometry. Besides the array of carbon oxides being reproduced as in neat irradiated carbon monoxide (CO) ices studied previously, the radiation exposure at 10 K resulted in the formation of nitrogen-bearing species of isocyanato radical (OCN), linear (l-NCN), nitric oxide (NO), nitrogen dioxide (NO(2)), plus diazirinone (N(2)CO). The infrared assignments of these species were further confirmed by isotopic shifts. The temporal evolution of individual species was found to fit in first-order reaction schemes, prepping up the underlying non-equilibrium chemistry on the formation of OCN, l-NCN, and NO radicals in particular. Also unique to the binary KBO model ices and viable for the future remote detection is diazirinone (N(2)CO) at 1860 cm(-1) (2ν(5)) formed at lower radiation exposure.


Subject(s)
Carbon Monoxide/chemistry , Ice/analysis , Nitrogen/chemistry , Extraterrestrial Environment , Mass Spectrometry , Models, Chemical , Radiation, Ionizing , Spectroscopy, Fourier Transform Infrared , Volatilization
11.
Phys Chem Chem Phys ; 13(2): 421-7, 2011 Jan 14.
Article in English | MEDLINE | ID: mdl-21079822

ABSTRACT

The formation of six ozone isotopomers and isotopologues, (16)O(16)O(16)O, (18)O(18)O(18)O, (16)O(16)O(18)O, (18)O(18)O(16)O, (16)O(18)O(16)O, and (18)O(16)O(18)O, has been studied in electron-irradiated solid oxygen (16)O(2) and (18)O(2) (1 ∶ 1) ices at 11 K. Significant isotope effects were found to exist which involved enrichment of (18)O-bearing ozone molecules. The heavy (18)O(18)O(18)O species is formed with a factor of about six higher than the corresponding (16)O(16)O(16)O isotopologue. Likewise, the heavy (18)O(18)O(16)O species is formed with abundances of a factor of three higher than the lighter (16)O(16)O(18)O counterpart. No isotope effect was observed in the production of (16)O(18)O(16)O versus(18)O(16)O(18)O. Such studies on the formation of distinct ozone isotopomers and isotopologues involving non-thermal, non-equilibrium chemistry by irradiation of oxygen ices with high energy electrons, as present in the magnetosphere of the giant planets Jupiter and Saturn, may suggest that similar mechanisms may contribute to the (18)O enrichment on the icy satellites of Jupiter and Saturn such as Ganymede, Rhea, and Dione. In such a Solar System environment, energetic particles from the magnetospheres of the giant planets may induce non-equilibrium reactions of suprathermal and/or electronically excited atoms under conditions, which are quite distinct from isotopic enrichments found in classical, thermal gas phase reactions.


Subject(s)
Oxygen/chemistry , Ozone/chemistry , Cold Temperature , Electrons , Gases/chemistry , Mass Spectrometry , Oxygen Isotopes/chemistry , Radiation, Ionizing , Solar System , Spectrophotometry, Infrared
12.
J Phys Chem A ; 114(16): 5256-62, 2010 Apr 29.
Article in English | MEDLINE | ID: mdl-20369875

ABSTRACT

The crossed molecular beam experiment of the deuterated ethynyl radical (C(2)D; X(2)Sigma(+)) with benzene [C(6)H(6)(X(1)A(1g))] and its fully deuterated analog [C(6)D(6)(X(1)A(1g))] was conducted at a collision energy of 58.1 kJ mol(-1). Our experimental data suggest the formation of the phenylacetylene-d(6) via indirect reactive scattering dynamics through a long-lived reaction intermediate; the reaction is initiated by a barrierless addition of the ethynyl-d(1) radical to benzene-d(6). This initial collision complex was found to decompose via a tight exit transition state located about 42 kJ mol(-1) above the separated products; here, the deuterium atom is ejected almost perpendicularly to the rotational plane of the decomposing intermediate and almost parallel to the total angular momentum vector. The overall experimental exoergicity of the reaction is shown to be 121 +/- 10 kJ mol(-1); this compares nicely with the computed reaction energy of -111 kJ mol(-1). Even though the experiment was conducted at a collisional energy higher than equivalent temperatures typically found in the atmosphere of Titan (94 K and higher), the reaction may proceed in Titan's atmosphere as it involves no entrance barrier, all transition states involved are below the energy of the separated reactants, and the reaction is exoergic. Further, the phenylacetylene was found to be the sole reaction product.


Subject(s)
Acetylene/analogs & derivatives , Atmosphere/chemistry , Extraterrestrial Environment/chemistry , Saturn , Acetylene/chemical synthesis , Acetylene/chemistry , Temperature , Thermodynamics
13.
Proc Natl Acad Sci U S A ; 106(38): 16078-83, 2009 Sep 22.
Article in English | MEDLINE | ID: mdl-19805262

ABSTRACT

For the last four decades, the role of polyynes such as diacetylene (HCCCCH) and triacetylene (HCCCCCCH) in the chemical evolution of the atmosphere of Saturn's moon Titan has been a subject of vigorous research. These polyacetylenes are thought to serve as an UV radiation shield in planetary environments; thus, acting as prebiotic ozone, and are considered as important constituents of the visible haze layers on Titan. However, the underlying chemical processes that initiate the formation and control the growth of polyynes have been the least understood to date. Here, we present a combined experimental, theoretical, and modeling study on the synthesis of the polyyne triacetylene (HCCCCCCH) via the bimolecular gas phase reaction of the ethynyl radical (CCH) with diacetylene (HCCCCH). This elementary reaction is rapid, has no entrance barrier, and yields the triacetylene molecule via indirect scattering dynamics through complex formation in a single collision event. Photochemical models of Titan's atmosphere imply that triacetylene may serve as a building block to synthesize even more complex polyynes such as tetraacetylene (HCCCCCCCCH).


Subject(s)
Acetylene/chemistry , Atmosphere/chemistry , Polyynes/chemistry , Saturn , Extraterrestrial Environment , Gases/chemistry , Models, Chemical , Polyynes/chemical synthesis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
14.
J Phys Chem A ; 113(45): 12675-85, 2009 Nov 12.
Article in English | MEDLINE | ID: mdl-19772299

ABSTRACT

The bimolecular reaction of ground state cyano radical with propylene under the condition of single collision is investigated by combining ab initio electronic structure calculations for predicting reaction paths and RRKM theory to yield rate constant for each path. The isomerization and dissociation channels for each of the seven collision complexes are characterized by utilizing the unrestricted B3LYP/cc-pVTZ level of theory and the CCSD(T)/cc-pVTZ calculations. Sifting with the facilitation of RRKM rate constants through web of ab initio paths composed of 8 collision complexes, 37 intermediates, and 12 H-, 23 H(2)-, 3 HCN-, and 4 CH(3)-dissociated products, we identify the most probable paths down to 7-9 species at collisions energies of 0 and 5 kcal/mol as the reaction mechanisms. The rate equations of the reaction mechanisms are solved numerically such that the concentration evolutions for all species involved are obtained. This study predicts that CN + C(2)H(3)CH(3) reaction via any of the seven collision complex, c1-c5, c7, and c8, would produce p1(CH(3)CHCHCN) + H, p2(CH(2)CHCH(2)CN) + H, and mostly p43(vinyl cyanide) + CH(3) for collision energy within 0-5 kcal/mol. In addition to the insertion mechanism through collision complex, the direct H-abstraction of propylene by CN radical might occur. Our investigation indicates that the barrierless and exoergic CN(X(2)Sigma(+)) + C(2)H(3)CH(3)(X(1)A') reaction would be an efficient route for the p1, p2, and p43, and likely HCN formation in cold molecular clouds and in the atmosphere of Saturn's satellite Titan.


Subject(s)
Alkenes/chemistry , Computer Simulation , Cyanides/chemistry , Extraterrestrial Environment/chemistry , Models, Chemical , Quantum Theory , Saturn , Free Radicals/chemistry
15.
J Chem Phys ; 128(24): 244303, 2008 Jun 28.
Article in English | MEDLINE | ID: mdl-18601328

ABSTRACT

The interstellar reaction of ground-state carbon atom with the simplest polyyne, diacetylene (HCCCCH), is investigated theoretically to explore probable routes to form hydrogen-deficient carbon clusters at ultralow temperature in cold molecular clouds. The isomerization and dissociation channels for each of the three collision complexes are characterized by utilizing the unrestricted B3LYP/6-311G(d,p) level of theory and the CCSD(T)/cc-pVTZ calculations. With facilitation of RRKM and variational RRKM rate constants at collision energies of 0-10 kcalmol, the most probable paths, thus reaction mechanism, are determined. Subsequently, the corresponding rate equations are solved that the evolutions of concentrations of collision complexes, intermediates, and products versus time are obtained. As a result, the final products and yields are identified. This study predicts that three collision complexes, c1, c2, and c3, would produce a single final product, 2,4-pentadiynylidyne, HCCCCC(X (2)Pi), C(5)H (p1)+H, via the most stable intermediate, carbon chain HC(5)H (i4). Our investigation indicates the title reaction is efficient to form astronomically observed 2,4-pentadiynylidyne in cold molecular clouds, where a typical translational temperature is 10 K, via a single bimolecular gas phase reaction.

16.
J Org Chem ; 72(20): 7597-604, 2007 Sep 28.
Article in English | MEDLINE | ID: mdl-17784772

ABSTRACT

The reaction dynamics of phenyl radicals (C6H5) with ethylene (C2H4) and D4-ethylene (C2D4) were investigated at two collision energies of 83.6 and 105.3 kJ mol-1 utilizing a crossed molecular beam setup. The experiments suggested that the reaction followed indirect scattering dynamics via complex formation and was initiated by an addition of the phenyl radical to the carbon-carbon double bond of the ethylene molecule forming a C6H5CH2CH2 radical intermediate. Under single collision conditions, this short-lived transient species was found to undergo unimolecular decomposition via atomic hydrogen loss through a tight exit transitions state to synthesize the styrene molecule (C6H5C2H3). Experiments with D4-ethylene verified that in the corresponding reaction with ethylene the hydrogen atom was truly emitted from the ethylene unit but not from the phenyl moiety. The overall reaction to form styrene plus atomic hydrogen from the reactants was found to be exoergic by 25 +/- 12 kJ mol(-1). This study provides solid evidence that in combustion flames the styrene molecule, a crucial precursor to form polycyclic aromatic hydrocarbons (PAHs), can be formed within a single neutral-neutral collision, a long-standing theoretical prediction which has remained to be confirmed by laboratory experiments under well-defined single collision conditions for the last 50 years.

17.
J Phys Chem A ; 111(23): 4914-21, 2007 Jun 14.
Article in English | MEDLINE | ID: mdl-17516638

ABSTRACT

The chemical dynamics of the reaction of allyl radicals, C(3)H(5)(X(2)A(2)), with two C(3)H(4) isomers, methylacetylene (CH(3)CCH(X(1)A(1))) and allene (H(2)CCCH(2)(X(1)A(1))) together with their (partially) deuterated counterparts, were unraveled under single-collision conditions at collision energies of about 125 kJ mol(-1) utilizing a crossed molecular beam setup. The experiments indicate that the reactions are indirect via complex formation and proceed via an addition of the allyl radical with its terminal carbon atom to the terminal carbon atom of the allene and of methylacetylene (alpha-carbon atom) to form the intermediates H(2)CCHCH(2)CH(2)CCH(2) and H(2)CCHCH(2)CHCCH(3), respectively. The lifetimes of these intermediates are similar to their rotational periods but too short for a complete energy randomization to occur. Experiments with D4-allene and D4-methylacetylene verify explicitly that the allyl group stays intact: no hydrogen emission was observed but only the release of deuterium atoms from the perdeuterated reactants. Further isotopic substitution experiments with D3-methylacetylene combined with the nonstatistical nature of the reaction suggest that the intermediates decompose via hydrogen atom elimination to 1,3,5-hexatriene, H(2)CCHCH(2)CHCCH(2), and 1-hexen-4-yne, H(2)CCHCH(2)CCCH(3), respectively, via tight exit transition states located about 10-15 kJ mol(-1) above the separated products. The overall reactions were found to be endoergic by 98 +/- 4 kJ mol(-1) and have characteristic threshold energies to reaction between 105 and 110 kJ mol(-1). Implications of these findings to combustion and interstellar chemistry are discussed.

18.
J Phys Chem A ; 111(17): 3241-7, 2007 May 03.
Article in English | MEDLINE | ID: mdl-17428038

ABSTRACT

The reaction between ground state carbon atoms, C(3P(j)), and phosphine, PH3(X(1)A1), was investigated at two collision energies of 21.1 and 42.5 kJ mol(-1) using the crossed molecular beam technique. The chemical dynamics extracted from the time-of-flight spectra and laboratory angular distributions combined with ab initio calculations propose that the reaction proceeds on the triplet surface via an addition of atomic carbon to the phosphorus atom. This leads to a triplet CPH3 complex. A successive hydrogen shift forms an HCPH2 intermediate. The latter was found to decompose through atomic hydrogen emission leading to the cis/trans-HCPH(X(2)A') reaction products. The identification of cis/trans-HCPH(X(2)A') molecules under single collision conditions presents a potential pathway to form the very first carbon-phosphorus bond in extraterrestrial environments like molecular clouds and circumstellar envelopes, and even in the postplume chemistry of the collision of comet Shoemaker-Levy 9 with Jupiter.


Subject(s)
Carbon/chemistry , Extraterrestrial Environment/chemistry , Phosphines/chemistry , Models, Molecular , Molecular Conformation
19.
Phys Chem Chem Phys ; 8(46): 5454-61, 2006 Dec 14.
Article in English | MEDLINE | ID: mdl-17119654

ABSTRACT

The chemical dynamics of the reaction of ground state carbon atoms, C(3Pj), with vinyl cyanide, C2H3CN(X 1A'), were examined under single collision conditions at collision energies of 29.9 and 43.9 kJ mol(-1) using the crossed molecular beams approach. The experimental studies were combined with electronic structure calculations on the triplet C4H3N potential energy surface (H. F. Su, R. I. Kaiser, A. H. H. Chang, J. Chem. Phys., 2005, 122, 074320). Our investigations suggest that the reaction follows indirect scattering dynamics via addition of the carbon atom to the carbon-carbon double bond of the vinyl cyanide molecule yielding a cyano cyclopropylidene collision complex. The latter undergoes ring opening to form cis/trans triplet cyano allene which fragments predominantly to the 1-cyano propargyl radical via tight exit transition states; the 3-cyano propargyl isomer was inferred to be formed at least a factor of two less; also, no molecular hydrogen elimination channel was observed experimentally. These results are in agreement with the computational studies predicting solely the existence of a carbon versus hydrogen atom exchange pathway and the dominance of the 1-cyano propargyl radical product. The discovery of the cyano propargyl radical in the reaction of atomic carbon with vinyl cyanide under single collision conditions implies that this molecule can be an important reaction intermediate in combustion flames and also in extraterrestrial environments (cold molecular clouds, circumstellar envelopes of carbon stars) which could lead to the formation of cyano benzene (C6H5CN) upon reaction with a propargyl radical.

20.
J Chem Phys ; 125(13): 133113, 2006 Oct 07.
Article in English | MEDLINE | ID: mdl-17029439

ABSTRACT

Ab initio modified Gaussian-2 G2M(RCC,MP2) calculations have been performed for various isomers and transition states on the singlet C4H4 potential energy surface. The computed relative energies and molecular parameters have then been used to calculate energy-dependent rate constants for different isomerization and dissociation processes in the C4H4 system employing Rice-Ramsperger-Kassel-Marcus theory and to predict branching ratios of possible products of the C2(1Sigmag+)+C2H4, C(1D)+H2CCCH2, and C(1D)+H3CCCH reactions under single-collision conditions. The results show that C2 adds to the double C=C bond of ethylene without a barrier to form carbenecyclopropane, which then isomerizes to butatriene by a formal C2 "insertion" into the C-C bond of the C2H4 fragment. Butatriene can rearrange to the other isomers of C4H4, including allenylcarbene, methylenecyclopropene, vinylacetylene, methylpropargylene, cyclobutadiene, tetrahedrane, methylcyclopropenylidene, and bicyclobutene. The major decomposition products of the chemically activated C4H4 molecule formed in the C2(1Sigmag+)+C2H4 reaction are calculated to be acetylene+vinylidene (48.6% at Ecol = 0) and 1-buten-3-yne-2-yl radical [i-C4H3(X2A'), H2C=C=C=CH*]+H (41.3%). As the collision energy increases from 0 to 10 kcal/mol, the relative yield of i-C4H3+H grows to 52.6% and that of C2H2+CCH2 decreases to 35.5%. For the C(1D)+allene reaction, the most important products are also i-C4H3+H (55.2%) and C2H2+CCH2 (30.1%), but for C(1D)+methylacetylene, which accesses a different region of the C4H4 singlet potential energy surface, the calculated product branching ratios differ significantly: 65%-69% for i-C4H3+H, 18%-14% for C2H2+CCH2, and approximately 8% for diacetylene+H2.

SELECTION OF CITATIONS
SEARCH DETAIL
...