Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Alzheimers Dis ; 91(3): 999-1006, 2023.
Article in English | MEDLINE | ID: mdl-36530088

ABSTRACT

BACKGROUND: Strength and mobility are essential for activities of daily living. With aging, weaker handgrip strength, mobility, and asymmetry predict poorer cognition. We therefore sought to quantify the relationship between handgrip metrics and volumes quantified on brain magnetic resonance imaging (MRI). OBJECTIVE: To model the relationships between handgrip strength, mobility, and MRI volumetry. METHODS: We selected 38 participants with Alzheimer's disease dementia: biomarker evidence of amyloidosis and impaired cognition. Handgrip strength on dominant and non-dominant hands was measured with a hand dynamometer. Handgrip asymmetry was calculated. Two-minute walk test (2MWT) mobility evaluation was combined with handgrip strength to identify non-frail versus frail persons. Brain MRI volumes were quantified with Neuroreader. Multiple regression adjusting for age, sex, education, handedness, body mass index, and head size modeled handgrip strength, asymmetry and 2MWT with brain volumes. We modeled non-frail versus frail status relationships with brain structures by analysis of covariance. RESULTS: Higher non-dominant handgrip strength was associated with larger volumes in the hippocampus (p = 0.02). Dominant handgrip strength was related to higher frontal lobe volumes (p = 0.02). Higher 2MWT scores were associated with larger hippocampal (p = 0.04), frontal (p = 0.01), temporal (p = 0.03), parietal (p = 0.009), and occipital lobe (p = 0.005) volumes. Frailty was associated with reduced frontal, temporal, and parietal lobe volumes. CONCLUSION: Greater handgrip strength and mobility were related to larger hippocampal and lobar brain volumes. Interventions focused on improving handgrip strength and mobility may seek to include quantified brain volumes on MR imaging as endpoints.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Aged , Activities of Daily Living , Hand Strength , Brain/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Hippocampus
2.
Cancer Res ; 62(15): 4419-26, 2002 Aug 01.
Article in English | MEDLINE | ID: mdl-12154049

ABSTRACT

Selective Estrogen Receptor Modulators (SERMs) are a new class of drugsthat bind to estrogen receptor (ER) and elicit agonistic or antagonistic responses, depending on the target tissue. We have developed an in vitro system in which some SERMs (4-hydroxytamoxifen and resveratrol) demonstrate estrogenic response through wild-type (wt) ER, whereas others (raloxifene and GW7604) remain antiestrogenic. This system mimics the tamoxifen-resistant phenotype in clinic, when resistant tumors contain wtER. We used Atlas cDNA arrays to study gene expression profiles after ER activation by different SERMs in MDA-MB-231 human breast cancer cells stably transfected with wtER. Cells were treated with estradiol, four different SERMs, and the pure antiestrogen ICI 182,780. The obtained expression data were analyzed using GeneSpring software. Real-time reverse transcription-PCR was used to verify the array data. Our results showed that treatment with various compounds altered the expression of a diverse group of genes, revealing sets of overlapping genes that may represent a complex network of genes of interrelated signal transduction pathways. Sets of "agonistic" and "antagonistic" genes were identified on the basis of the known response to different SERMs. Further analysis of selected sets of genes revealed functionally related group of genes in each set, encoding proteins that were related to cell proliferation, survival, and apoptosis. Flow cytometry data indicated an antiapoptotic activity in cells treated with agonists versus apoptotic activity in cells treated with antagonists. A model for estradiol-like (survival) and antiestrogen-like (apoptosis) activities of SERMs on the basis of their gene expression profiles is suggested.


Subject(s)
Breast Neoplasms/metabolism , Receptors, Estrogen/metabolism , Selective Estrogen Receptor Modulators/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Culture Techniques , Estrogen Receptor alpha , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Humans , Oligonucleotide Array Sequence Analysis , Receptors, Estrogen/biosynthesis , Receptors, Estrogen/genetics , Selective Estrogen Receptor Modulators/metabolism , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...