Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
ACS Nano ; 18(24): 15958-15969, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38836504

ABSTRACT

Nanoparticle (NP) size and proximity are two physical descriptors applicable to practically all NP-supported catalysts. However, with conventional catalyst design, independent variation of these descriptors to investigate their individual effects on thermocatalysis remains challenging. Using a raspberry-colloid-templating approach, we synthesized a well-defined catalyst series comprising Pd12Au88 alloy NPs of three distinct sizes and at two different interparticle distances. We show that NP size and interparticle distance independently control activity and selectivity, respectively, in the hydrogenation of benzaldehyde to benzyl alcohol and toluene. Surface-sensitive spectroscopic analysis indicates that the surfaces of smaller NPs expose a greater fraction of reactive Pd dimers, compared to inactive Pd single atoms, thereby increasing intrinsic catalytic activity. Computational simulations reveal how a larger interparticle distance improves catalytic selectivity by diminishing the local benzyl alcohol concentration profile between NPs, thus suppressing its readsorption and consequently, undesired formation of toluene. Accordingly, benzyl alcohol yield is maximized using catalysts with smaller NPs separated by larger interparticle distances, overcoming activity-selectivity trade-offs. This work exemplifies the high suitability of the modular raspberry-colloid-templating method as a model catalyst platform to isolate individual descriptors and establish clear structure-property relationships, thereby bridging the materials gap between surface science and technical catalysts.

2.
Nat Nanotechnol ; 17(6): 606-612, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35484211

ABSTRACT

Controlling the precise atomic architecture of supported metals is central to optimizing their catalytic performance, as recently exemplified for nanostructured platinum and ruthenium systems in acetylene hydrochlorination, a key process for vinyl chloride production. This opens the possibility of building on historically established activity correlations. In this study, we derived quantitative activity, selectivity and stability descriptors that account for the metal-dependent speciation and host effects observed in acetylene hydrochlorination. To achieve this, we generated a platform of Au, Pt, Ru, Ir, Rh and Pd single atoms and nanoparticles supported on different types of carbon and assessed their evolution during synthesis and under the relevant reaction conditions. Combining kinetic, transient and chemisorption analyses with modelling, we identified the acetylene adsorption energy as a speciation-sensitive activity descriptor, further determining catalyst selectivity with respect to coke formation. The stability of the different nanostructures is governed by the interplay between single atom-support interactions and chlorine affinity, promoting metal redispersion or agglomeration, respectively.

3.
J Mater Chem A Mater ; 10(11): 5953-5961, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35401984

ABSTRACT

Supported low-nuclearity metal catalysts integrating single atoms or small clusters have emerged as promising materials for diverse applications. While sophisticated synthetic methods provide a high level of nuclearity control in the subnanometre regime, these routes do not fulfil the requirements for translation into industrial practice of (i) effectiveness for high metal contents and (ii) facile scalability. Herein, we present a gas-phase redispersion strategy consisting of sequential C2H2 and HCl treatments to gradually disperse Ru, Rh and Ir nanoparticles supported on commercial activated carbon with metal content up to 10 wt% and initial average sizes of ≈ 1 nm into small clusters and eventually single atoms. Avoidance of nanoparticle surface overchlorination, which hinders C2H2 adsorption, is identified as key for the redispersion process, as demonstrated by the inefficacy of both C2H2-HCl cofeeding and inverse sequence (i.e., HCl first) treatments. Precise size control (±0.1 nm) is enabled by regulating the number of C2H2-HCl cycles. Detailed characterisation by X-ray absorption spectroscopy, electron paramagnetic resonance and time-resolved mass spectrometry reveals that the redispersion occurs via a layer-by-layer mechanism. Specifically, the migration of surface chlorinated metal species to the carbon support is induced by the C2H2 treatment, depleting accessible surface Cl atoms, while the subsequent HCl treatment rechlorinates the cluster surface. The strategy paves the way for the generation of high-density metal sites with tuneable nuclearity for tailored applications.

4.
Small ; 18(15): e2200224, 2022 04.
Article in English | MEDLINE | ID: mdl-35224866

ABSTRACT

The introduction of a foreign metal atom in the coordination environment of single-atom catalysts constitutes an exciting frontier of active-site engineering, generating bimetallic low-nuclearity catalysts often exhibiting unique catalytic synergies. To date, the exploration of their full scope is thwarted by (i) the lack of synthetic techniques with control over intermetallic coordination, and (ii) the challenging characterization of these materials. Herein, carbon-host functionalization is presented as a strategy to selectively generate Au-Ru dimers and isolated sites by simple incipient wetness impregnation, as corroborated by careful X-ray absorption spectroscopy analysis. The distinct catalytic fingerprints are unveiled via the hydrogen evolution reaction, employed as a probe for proton adsorption properties. Intriguingly, the virtually inactive Au atoms enhance the reaction kinetics of their Ru counterparts already when spatially isolated, by shifting the proton adsorption free energy closer to neutrality. Remarkably, the effect is magnified by a factor of 2 in dimers. These results exemplify the relevance of controlling intermetallic coordination for the rational design of bimetallic low-nuclearity catalysts.


Subject(s)
Carbon , Protons , Adsorption , Catalysis , Hydrogen/chemistry
5.
Nat Commun ; 12(1): 4016, 2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34188049

ABSTRACT

For decades, carbons have been the support of choice in acetylene hydrochlorination, a key industrial process for polyvinyl chloride manufacture. However, no unequivocal design criteria could be established to date, due to the complex interplay between the carbon host and the metal nanostructure. Herein, we disentangle the roles of carbon in determining activity and stability of platinum-, ruthenium-, and gold-based hydrochlorination catalysts and derive descriptors for optimal host design, by systematically varying the porous properties and surface functionalization of carbon, while preserving the active metal sites. The acetylene adsorption capacity is identified as central activity descriptor, while the density of acidic oxygen sites determines the coking tendency and thus catalyst stability. With this understanding, a platinum single-atom catalyst is developed with stable catalytic performance under two-fold accelerated deactivation conditions compared to the state-of-the-art system, marking a step ahead towards sustainable PVC production.

6.
Small ; 17(16): e2005234, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33464715

ABSTRACT

The identification of the active sites and the derivation of structure-performance relationships are central for the development of high-performance heterogeneous catalysts. Here, a platform of platinum nanostructures, ranging from single atoms to nanoparticles of ≈4 nm supported on activated- and N-doped carbon (AC and NC), is employed to systematically assess nuclearity and host effects on the activity, selectivity, and stability in dibromomethane hydrodebromination, a key step in bromine-mediated methane functionalization processes. For this purpose, catalytic evaluation is coupled to in-depth characterization, kinetic analysis, and mechanistic studies based on density functional theory. Remarkably, the single atom catalysts achieve exceptional selectivity toward CH3 Br (up to 98%) when compared to nanoparticles and any previously reported system. Furthermore, the results reveal unparalleled specific activity over 1.3-2.3 nm-sized platinum nanoparticles, which also exhibit the highest stability. Additionally, host effects are found to markedly affect the catalytic performance. Specifically, on NC, the activity and CH3 Br selectivity are enhanced, but significant fouling occurs. On the other hand, AC-supported platinum nanostructures deactivate due to sintering and bromination. Simulations and kinetic fingerprints demonstrate that the observed reactivity patterns are governed by the H2 dissociation abilities of the catalysts and the availability of surface H-atoms.

7.
Small ; 17(16): e2004599, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33432775

ABSTRACT

Gold single-atom catalysts (SACs) exhibit outstanding reactivity in acetylene hydrochlorination to vinyl chloride, but their practical applicability is compromised by current synthesis protocols, using aqua regia as chlorine-based dispersing agent, and their high susceptibility to sintering on non-functionalized carbon supports at >500 K and/or under reaction conditions. Herein, a sustainable synthesis route to carbon-supported gold nanostructures in bimetallic catalysts is developed by employing salts as alternative chlorine source, allowing for tailored gold dispersion, ultimately reaching atomic level when using H2 PtCl6 . To rationalize these observations, several synthesis parameters (i.e., pH, Cl-content) as well as the choice of metal chlorides are evaluated, hinting at the key role of platinum in promoting a chlorine-mediated dispersion mechanism. This can be further extrapolated to redisperse large gold agglomerates (>70 nm) on carbon carriers into isolated atoms, which has important implications for catalyst regeneration. Another key role of platinum single atoms is to inhibit the sintering of their spatially isolated gold-based analogs up to 800 K and during acetylene hydrochlorination, without compromising the intrinsic activity of Au(I)-Cl active sites. Accordingly, exploiting cooperativity effects of a second metal is a promising strategy towards practical applicability of gold SACs, opening up exciting opportunities for multifunctional single-atom catalysis.

8.
Chem Rev ; 120(21): 11703-11809, 2020 11 11.
Article in English | MEDLINE | ID: mdl-33085890

ABSTRACT

Isolated atoms featuring unique reactivity are at the heart of enzymatic and homogeneous catalysts. In contrast, although the concept has long existed, single-atom heterogeneous catalysts (SACs) have only recently gained prominence. Host materials have similar functions to ligands in homogeneous catalysts, determining the stability, local environment, and electronic properties of isolated atoms and thus providing a platform for tailoring heterogeneous catalysts for targeted applications. Within just a decade, we have witnessed many examples of SACs both disrupting diverse fields of heterogeneous catalysis with their distinctive reactivity and substantially enriching our understanding of molecular processes on surfaces. To date, the term SAC mostly refers to late transition metal-based systems, but numerous examples exist in which isolated atoms of other elements play key catalytic roles. This review provides a compositional encyclopedia of SACs, celebrating the 10th anniversary of the introduction of this term. By defining single-atom catalysis in the broadest sense, we explore the full elemental diversity, joining different areas across the whole periodic table, and discussing historical milestones and recent developments. In particular, we examine the coordination structures and associated properties accessed through distinct single-atom-host combinations and relate them to their main applications in thermo-, electro-, and photocatalysis, revealing trends in element-specific evolution, host design, and uses. Finally, we highlight frontiers in the field, including multimetallic SACs, atom proximity control, and possible applications for multistep and cascade reactions, identifying challenges, and propose directions for future development in this flourishing field.

9.
Nat Catal ; 3(4): 376-385, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32292878

ABSTRACT

A worldwide replacement of the toxic mercuric chloride catalyst in vinyl chloride manufacture via acetylene hydrochlorination is slowed down by the limited durability of alternative catalytic systems at high space velocities. Here, we demonstrate that platinum single atoms on carbon carriers are substantially more stable (up to 1073 K) than their gold counterparts (up to 473 K), enabling facile and scalable preparation and precise tuning of their coordination environment by simple temperature control. By combining kinetic analysis, advanced characterisation, and density functional theory, we assess how the Pt species determines the catalytic performance and thereby identify Pt(II)-Cl as the active site, being three times more active than Pt nanoparticles. Remarkably, we show that Pt single atoms exhibit outstanding stability in acetylene hydrochlorination and surpass the space-time-yields of their gold-based analogues after 25 h time-on-stream, qualifying as candidate for sustainable vinyl chloride production.

10.
Angew Chem Int Ed Engl ; 58(35): 12297-12304, 2019 Aug 26.
Article in English | MEDLINE | ID: mdl-31278846

ABSTRACT

The potential implementation of ruthenium-based catalysts in polyvinyl chloride production via acetylene hydrochlorination is hindered by their inferior activity and stability compared to gold-based systems, despite their 4-fold lower price. Combining in-depth characterization and kinetic analysis we reveal the superior activity of ruthenium nanoparticles with an optimal size of 1.5 nm hosted on nitrogen-doped carbon (NC) and identify their deactivation modes: 1) nanoparticle redispersion into inactive single atoms and 2) coke formation at the metal sites. Tuning the density of the NC carrier enables a catalytic encapsulation of the ruthenium nanoparticles into single layer graphene shells at 1073 K that prevent the undesired metal redispersion. Finally, we show that feeding O2 during acetylene hydrochlorination limits coke formation over the nanodesigned ruthenium catalyst, while the graphene layer is preserved, resulting in a stability increase of 20 times, thus rivalling the performance of gold-based systems.

11.
Chem Sci ; 10(2): 359-369, 2019 Jan 14.
Article in English | MEDLINE | ID: mdl-30746085

ABSTRACT

Carbon-supported gold catalysts have the potential to replace the toxic mercuric chloride-based system applied industrially for acetylene hydrochlorination, a key technology for the manufacture of polyvinyl chloride. However, the design of an optimal catalyst is essentially hindered by the difficulties in assessing the nature of the active site. Herein, we present a platform of carbon supported gold nanostructures at a fixed metal loading, ranging from single atoms of tunable oxidation state and coordination to metallic nanoparticles, by varying the structure of functionalised carbons and use of thermal activation. While on activated carbon particle aggregation occurs progressively above 473 K, on nitrogen-doped carbon gold single atoms exhibit outstanding stability up to temperatures of 1073 K and under reaction conditions. By combining steady-state experiments, density functional theory, and transient mechanistic studies, we assess the relation between the metal speciation, electronic properties, and catalytic activity. The results indicate that the activity of gold-based catalysts correlates with the population of Au(i)Cl single atoms and the reaction follows a Langmuir-Hinshelwood mechanism. Strong interaction with HCl and thermodynamically favoured acetylene activation were identified as the key features of the Au(i)Cl sites that endow their superior catalytic performance in comparison to N-stabilised Au(iii) counterparts and gold nanoparticles. Finally, we show that the carrier (activated carbon versus nitrogen-doped carbon) does not affect the catalytic response, but determines the deactivation mechanism (gold particle aggregation and pore blockage, respectively), which opens up different options for the development of stable, high-performance hydrochlorination catalysts.

12.
Angew Chem Int Ed Engl ; 58(2): 504-509, 2019 Jan 08.
Article in English | MEDLINE | ID: mdl-30408311

ABSTRACT

Single-atom heterogeneous catalysts with well-defined architectures are promising for deriving structure-performance relationships, but the challenge lies in finely tuning the structural and electronic properties of the metal. To tackle this point, a new approach based on the surface diffusion of gold atoms on different cavities of N-doped carbon is presented. By controlling the activation temperature, the coordination neighbors (Cl, O, N) and the oxidation state of the metal can be tailored. Semi-hydrogenation of various alkynes on the single-atom gold catalysts displays substrate-dependent catalytic responses; structure insensitive for alkynols with γ-OH and unfunctionalized alkynes, and sensitive for alkynols with α-OH. Density functional theory links the sensitivity for alkynols to the strong interaction between the substrate and specific gold-cavity ensembles, mimicking a molecular recognition pattern that allows to identify the cavity site and to enhance the catalytic activity.

SELECTION OF CITATIONS
SEARCH DETAIL
...