Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Blood Cancer Discov ; 4(5): 365-373, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37486974

ABSTRACT

The role of measurable residual disease (MRD) in multiple myeloma patients treated with chimeric antigen receptor (CAR) T cells is uncertain. We analyzed MRD kinetics during the first year after idecabtagene vicleucel (ide-cel) infusion in 125 relapsed/refractory multiple myeloma patients enrolled in KarMMa. At month 1 after ide-cel, there were no differences in progression-free survival (PFS) between patients in less than complete response (CR) versus those in CR; only MRD status was predictive of significantly different PFS at this landmark. In patients with undetectable MRD at 3 months and beyond, PFS was longer in those achieving CR versus

Subject(s)
Multiple Myeloma , Neoplasms, Plasma Cell , Receptors, Chimeric Antigen , Humans , Receptors, Chimeric Antigen/therapeutic use , Prognosis , Multiple Myeloma/therapy , Immunotherapy, Adoptive , Neoplasm, Residual
2.
Transplant Cell Ther ; 28(8): 446-454, 2022 08.
Article in English | MEDLINE | ID: mdl-35605882

ABSTRACT

The Blood and Marrow Transplant Clinical Trials Network (BMT CTN) Myeloma Intergroup conducted a workshop on Immune and Cellular Therapy in Multiple Myeloma on January 7, 2022. This workshop included presentations by basic, translational, and clinical researchers with expertise in plasma cell dyscrasias. Four main topics were discussed: platforms for myeloma disease evaluation, insights into pathophysiology, therapeutic target and resistance mechanisms, and cellular therapy for multiple myeloma. Here we provide a comprehensive summary of these workshop presentations.


Subject(s)
Multiple Myeloma , Bone Marrow , Cell- and Tissue-Based Therapy , Clinical Trials as Topic , Humans , Multiple Myeloma/therapy
3.
Nat Med ; 27(4): 616-619, 2021 04.
Article in English | MEDLINE | ID: mdl-33619368

ABSTRACT

B cell maturation antigen (BCMA) is a target for various immunotherapies and a biomarker for tumor load in multiple myeloma (MM). We report a case of irreversible BCMA loss in a patient with MM who was enrolled in the KarMMa trial ( NCT03361748 ) and progressed after anti-BCMA CAR T cell therapy. We identified selection of a clone with homozygous deletion of TNFRSF17 (BCMA) as the underlying mechanism of immune escape. Furthermore, we found heterozygous TNFRSF17 loss or monosomy 16 in 37 out of 168 patients with MM, including 28 out of 33 patients with hyperhaploid MM who had not been previously treated with BCMA-targeting therapies, suggesting that heterozygous TNFRSF17 deletion at baseline could theoretically be a risk factor for BCMA loss after immunotherapy.


Subject(s)
B-Cell Maturation Antigen/genetics , Gene Deletion , Multiple Myeloma/genetics , Multiple Myeloma/immunology , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/immunology , Aged , Antigens, Neoplasm/metabolism , DNA Copy Number Variations/genetics , Homozygote , Humans , Magnetic Resonance Imaging , Male , Multiple Myeloma/diagnostic imaging
4.
N Engl J Med ; 384(8): 705-716, 2021 02 25.
Article in English | MEDLINE | ID: mdl-33626253

ABSTRACT

BACKGROUND: Idecabtagene vicleucel (ide-cel, also called bb2121), a B-cell maturation antigen-directed chimeric antigen receptor (CAR) T-cell therapy, has shown clinical activity with expected CAR T-cell toxic effects in patients with relapsed and refractory multiple myeloma. METHODS: In this phase 2 study, we sought to confirm the efficacy and safety of ide-cel in patients with relapsed and refractory myeloma. Patients with disease after at least three previous regimens including a proteasome inhibitor, an immunomodulatory agent, and an anti-CD38 antibody were enrolled. Patients received ide-cel target doses of 150 × 106 to 450 × 106 CAR-positive (CAR+) T cells. The primary end point was an overall response (partial response or better); a key secondary end point was a complete response or better (comprising complete and stringent complete responses). RESULTS: Of 140 patients enrolled, 128 received ide-cel. At a median follow-up of 13.3 months, 94 of 128 patients (73%) had a response, and 42 of 128 (33%) had a complete response or better. Minimal residual disease (MRD)-negative status (<10-5 nucleated cells) was confirmed in 33 patients, representing 26% of all 128 patients who were treated and 79% of the 42 patients who had a complete response or better. The median progression-free survival was 8.8 months (95% confidence interval, 5.6 to 11.6). Common toxic effects among the 128 treated patients included neutropenia in 117 patients (91%), anemia in 89 (70%), and thrombocytopenia in 81 (63%). Cytokine release syndrome was reported in 107 patients (84%), including 7 (5%) who had events of grade 3 or higher. Neurotoxic effects developed in 23 patients (18%) and were of grade 3 in 4 patients (3%); no neurotoxic effects higher than grade 3 occurred. Cellular kinetic analysis confirmed CAR+ T cells in 29 of 49 patients (59%) at 6 months and 4 of 11 patients (36%) at 12 months after infusion. CONCLUSIONS: Ide-cel induced responses in a majority of heavily pretreated patients with refractory and relapsed myeloma; MRD-negative status was achieved in 26% of treated patients. Almost all patients had grade 3 or 4 toxic effects, most commonly hematologic toxic effects and cytokine release syndrome. (Funded by bluebird bio and Celgene, a Bristol-Myers Squibb company; KarMMa ClinicalTrials.gov number, NCT03361748.).


Subject(s)
Immunotherapy, Adoptive , Multiple Myeloma/therapy , Receptors, Chimeric Antigen/therapeutic use , Adult , Aged , Biomarkers/blood , Cytokine Release Syndrome/etiology , Drug Resistance, Neoplasm , Female , Hematologic Diseases/chemically induced , Humans , Immunotherapy, Adoptive/adverse effects , Male , Middle Aged , Multiple Myeloma/immunology , Progression-Free Survival , Recurrence
5.
Nat Commun ; 12(1): 868, 2021 02 08.
Article in English | MEDLINE | ID: mdl-33558511

ABSTRACT

BCMA targeting chimeric antigen receptor (CAR) T cell therapy has shown deep and durable responses in multiple myeloma. However, relapse following therapy is frequently observed, and mechanisms of resistance remain ill-defined. Here, we perform single cell genomic characterization of longitudinal samples from a patient who relapsed after initial CAR T cell treatment with lack of response to retreatment. We report selection, following initial CAR T cell infusion, of a clone with biallelic loss of BCMA acquired by deletion of one allele and a mutation that creates an early stop codon on the second allele. This loss leads to lack of CAR T cell proliferation following the second infusion and is reflected by lack of soluble BCMA in patient serum. Our analysis suggests the need for careful detection of BCMA gene alterations in multiple myeloma cells from relapse following CAR T cell therapy.


Subject(s)
Alleles , B-Cell Maturation Antigen/genetics , Drug Resistance, Neoplasm , Immunotherapy, Adoptive , Multiple Myeloma/genetics , Multiple Myeloma/therapy , Bone Marrow/pathology , Humans , Multiple Myeloma/immunology , Tumor Microenvironment
6.
J Virol ; 90(5): 2372-87, 2015 Dec 16.
Article in English | MEDLINE | ID: mdl-26676770

ABSTRACT

UNLABELLED: The cellular response to virus infection is initiated when pathogen recognition receptors (PRR) engage viral pathogen-associated molecular patterns (PAMPs). This process results in induction of downstream signaling pathways that activate the transcription factor interferon regulatory factor 3 (IRF3). IRF3 plays a critical role in antiviral immunity to drive the expression of innate immune response genes, including those encoding antiviral factors, type 1 interferon, and immune modulatory cytokines, that act in concert to restrict virus replication. Thus, small molecule agonists that can promote IRF3 activation and induce innate immune gene expression could serve as antivirals to induce tissue-wide innate immunity for effective control of virus infection. We identified small molecule compounds that activate IRF3 to differentially induce discrete subsets of antiviral genes. We tested a lead compound and derivatives for the ability to suppress infections caused by a broad range of RNA viruses. Compound administration significantly decreased the viral RNA load in cultured cells that were infected with viruses of the family Flaviviridae, including West Nile virus, dengue virus, and hepatitis C virus, as well as viruses of the families Filoviridae (Ebola virus), Orthomyxoviridae (influenza A virus), Arenaviridae (Lassa virus), and Paramyxoviridae (respiratory syncytial virus, Nipah virus) to suppress infectious virus production. Knockdown studies mapped this response to the RIG-I-like receptor pathway. This work identifies a novel class of host-directed immune modulatory molecules that activate IRF3 to promote host antiviral responses to broadly suppress infections caused by RNA viruses of distinct genera. IMPORTANCE: Incidences of emerging and reemerging RNA viruses highlight a desperate need for broad-spectrum antiviral agents that can effectively control infections caused by viruses of distinct genera. We identified small molecule compounds that can selectively activate IRF3 for the purpose of identifying drug-like molecules that can be developed for the treatment of viral infections. Here, we report the discovery of a hydroxyquinoline family of small molecules that can activate IRF3 to promote cellular antiviral responses. These molecules can prophylactically or therapeutically control infection in cell culture by pathogenic RNA viruses, including West Nile virus, dengue virus, hepatitis C virus, influenza A virus, respiratory syncytial virus, Nipah virus, Lassa virus, and Ebola virus. Our study thus identifies a class of small molecules with a novel mechanism to enhance host immune responses for antiviral activity against a variety of RNA viruses that pose a significant health care burden and/or that are known to cause infections with high case fatality rates.


Subject(s)
Antiviral Agents/pharmacology , Immunity, Innate/drug effects , Immunologic Factors/pharmacology , RNA Viruses/immunology , RNA Viruses/physiology , Virus Replication/drug effects , Animals , Antiviral Agents/isolation & purification , Cell Line , Gene Expression Profiling , Humans , Immunologic Factors/isolation & purification , Viral Load , Virus Cultivation
7.
J Gen Virol ; 95(Pt 2): 350-362, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24243730

ABSTRACT

Type I alveolar epithelial cells are a replicative niche for influenza in vivo, yet their response to infection is not fully understood. To better characterize their cellular responses, we have created an immortalized murine lung epithelial type I cell line (LET1). These cells support spreading influenza virus infection in the absence of exogenous protease and thus permit simultaneous analysis of viral replication dynamics and host cell responses. LET1 cells can be productively infected with human, swine and mouse-adapted strains of influenza virus and exhibit expression of an antiviral transcriptional programme and robust cytokine secretion. We characterized influenza virus replication dynamics and host responses of lung type I epithelial cells and identified the capacity of epithelial cell-derived type I IFN to regulate specific modules of antiviral effectors to establish an effective antiviral state. Together, our results indicate that the type I epithelial cell can play a major role in restricting influenza virus infection without contribution from the haematopoietic compartment.


Subject(s)
Epithelial Cells/immunology , Epithelial Cells/virology , Immunity, Innate , Influenza A virus/immunology , Influenza A virus/physiology , Virus Replication , Animals , Cell Line , Interferon Type I/immunology , Interferon Type I/metabolism , Mice , Mice, Inbred C57BL
8.
Sci Data ; 1: 140033, 2014.
Article in English | MEDLINE | ID: mdl-25977790

ABSTRACT

The Systems Biology for Infectious Diseases Research program was established by the U.S. National Institute of Allergy and Infectious Diseases to investigate host-pathogen interactions at a systems level. This program generated 47 transcriptomic and proteomic datasets from 30 studies that investigate in vivo and in vitro host responses to viral infections. Human pathogens in the Orthomyxoviridae and Coronaviridae families, especially pandemic H1N1 and avian H5N1 influenza A viruses and severe acute respiratory syndrome coronavirus (SARS-CoV), were investigated. Study validation was demonstrated via experimental quality control measures and meta-analysis of independent experiments performed under similar conditions. Primary assay results are archived at the GEO and PeptideAtlas public repositories, while processed statistical results together with standardized metadata are publically available at the Influenza Research Database (www.fludb.org) and the Virus Pathogen Resource (www.viprbrc.org). By comparing data from mutant versus wild-type virus and host strains, RNA versus protein differential expression, and infection with genetically similar strains, these data can be used to further investigate genetic and physiological determinants of host responses to viral infection.


Subject(s)
Host-Pathogen Interactions , Influenza A virus , Influenza, Human/virology , Orthomyxoviridae Infections/virology , Animals , Data Collection , Databases, Factual , Humans , Influenza A virus/pathogenicity , Influenza A virus/physiology , Influenza, Human/physiopathology , Mice , Orthomyxoviridae Infections/physiopathology , Systems Biology
9.
mBio ; 2(1): e00325-10, 2011 Mar 01.
Article in English | MEDLINE | ID: mdl-21285433

ABSTRACT

The twentieth century was marked by extraordinary advances in our understanding of microbes and infectious disease, but pandemics remain, food and waterborne illnesses are frequent, multidrug-resistant microbes are on the rise, and the needed drugs and vaccines have not been developed. The scientific approaches of the past-including the intense focus on individual genes and proteins typical of molecular biology-have not been sufficient to address these challenges. The first decade of the twenty-first century has seen remarkable innovations in technology and computational methods. These new tools provide nearly comprehensive views of complex biological systems and can provide a correspondingly deeper understanding of pathogen-host interactions. To take full advantage of these innovations, the National Institute of Allergy and Infectious Diseases recently initiated the Systems Biology Program for Infectious Disease Research. As participants of the Systems Biology Program, we think that the time is at hand to redefine the pathogen-host research paradigm.


Subject(s)
Communicable Diseases , Host-Pathogen Interactions , Systems Biology/methods , Communicable Diseases/genetics , Communicable Diseases/immunology , Communicable Diseases/metabolism , Humans
10.
J Virol ; 82(22): 11140-51, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18799582

ABSTRACT

TRIM5alpha has been shown to be a major postentry determinant of the host range for gammaretroviruses and lentiviruses and, more recently, spumaviruses. However, the restrictive potential of TRIM5alpha against other retroviruses has been largely unexplored. We sought to determine whether or not Mason-Pfizer monkey virus (M-PMV), a prototype betaretrovirus isolated from rhesus macaques, was sensitive to restriction by TRIM5alpha. Cell lines from both Old World and New World primate species were screened for their susceptibility to infection by vesicular stomatitis virus G protein pseudotyped M-PMV. All of the cell lines tested that were established from Old World primates were found to be susceptible to M-PMV infection. However, fibroblasts established from three New World monkey species specifically resisted infection by this virus. Exogenously expressing TRIM5alpha from either tamarin or squirrel monkeys in permissive cell lines resulted in a block to M-PMV infection. Restriction in the resistant cell line of spider monkey origin was determined to occur at a postentry stage. However, spider monkey TRIM5alpha expression in permissive cells failed to restrict M-PMV infection, and interference with endogenous TRIM5alpha in the spider monkey fibroblasts failed to relieve the block to infectivity. Our results demonstrate that TRIM5alpha specificity extends to betaretroviruses and suggest that New World monkeys have evolved additional mechanisms to restrict the infection of at least one primate betaretrovirus.


Subject(s)
Mason-Pfizer monkey virus/growth & development , Mason-Pfizer monkey virus/immunology , Proteins/immunology , Virus Internalization , Animals , Antiviral Restriction Factors , Carrier Proteins/immunology , Cell Line , Cercopithecidae , Humans , Mason-Pfizer monkey virus/physiology , Platyrrhini , Tripartite Motif Proteins , Ubiquitin-Protein Ligases , Virus Replication
11.
Science ; 316(5832): 1756-8, 2007 Jun 22.
Article in English | MEDLINE | ID: mdl-17588933

ABSTRACT

Primate genomes contain a large number of endogenous retroviruses and encode evolutionarily dynamic proteins that provide intrinsic immunity to retroviral infections. We report here the resurrection of the core protein of a 4-million-year-old endogenous virus from the chimpanzee genome and show that the human variant of the intrinsic immune protein TRIM5alpha can actively prevent infection by this virus. However, we suggest that selective changes that have occurred in the human lineage during the acquisition of resistance to this virus, and perhaps similar viruses, may have left our species more susceptible to infection by human immunodeficiency virus type 1 (HIV-1).


Subject(s)
Carrier Proteins/physiology , Endogenous Retroviruses/physiology , Animals , Antiviral Restriction Factors , Base Sequence , Biological Evolution , Carrier Proteins/genetics , Cats , Cell Line , DNA , Disease Susceptibility , Endogenous Retroviruses/genetics , Evolution, Molecular , Gorilla gorilla , HIV Infections/genetics , HIV Infections/immunology , HIV-1 , Humans , Immunity, Innate/genetics , Macaca mulatta , Molecular Sequence Data , Pan troglodytes/genetics , Pan troglodytes/virology , Retroviridae Infections/genetics , Retroviridae Infections/immunology , Tripartite Motif Proteins , Ubiquitin-Protein Ligases
12.
J Virol ; 80(2): 875-82, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16378989

ABSTRACT

It is well established that many host factors are involved in the replication of human immunodeficiency virus (HIV) type 1. One host protein, uracil DNA glycosylase 2 (UNG2), binds to multiple viral proteins and is packaged into HIV type 1 virions. UNG initiates the removal of uracils from DNA, and this has been proposed to be important both for reverse transcription and as a mediator to the antiviral effect of virion-incorporated Apobec3G, a cytidine deaminase that generates numerous uracils in the viral DNA during virus replication. We used a natural human UNG-/- cell line as well as cells that express a potent catalytic active-site inhibitor of UNG to assess the effects of removing UNG activity on HIV infectivity. In both cases, we find UNG2 activity and protein to be completely dispensable for virus replication. Moreover, we find that virion-associated UNG2 does not affect the loss of infectivity caused by Apobec3G.


Subject(s)
DNA Glycosylases/physiology , HIV Infections/virology , HIV-1/physiology , Nucleoside Deaminases/physiology , Repressor Proteins/physiology , APOBEC-3G Deaminase , Cell Line , Cytidine Deaminase , Humans , Virus Replication
13.
Chem Biol ; 11(10): 1413-22, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15489168

ABSTRACT

Factor VIII is a critical member of the blood coagulation cascade. It binds to the membrane surfaces of activated platelets at the site of vascular injury via a highly specific interaction between factor VIII's carboxy-terminal C2 domain and their phosphatidylserine-rich lipid bilayer. We have identified small-molecule inhibitors of factor VIII's membrane binding activity that have IC50 values as low as 2.5 microM. This interaction is approximately 10(3)-fold tighter than that of free o-phospho-L-serine. These compounds also inhibit factor VIII-dependent activation of factor X, indicating that disruption of membrane lipid binding leads to inhibition of the intrinsic coagulation pathway. The tightest binding inhibitor is specific and does not prevent membrane binding by the closely related coagulation factor V. These results indicate that this and related compounds may be used as leads to develop novel antithrombotic agents.


Subject(s)
Blood Coagulation Factor Inhibitors/isolation & purification , Blood Coagulation Factor Inhibitors/metabolism , Factor VIII/antagonists & inhibitors , Factor VIII/chemistry , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/chemistry , Blood Coagulation Factor Inhibitors/chemistry , Dose-Response Relationship, Drug , Factor VIII/metabolism , Inhibitory Concentration 50 , Membrane Proteins/metabolism , Molecular Weight , Protein Binding/physiology , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...