Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Pharmacother ; 176: 116860, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38861855

ABSTRACT

Isorhamnetin (C16H12O7), a 3'-O-methylated derivative of quercetin from the class of flavonoids, is predominantly present in the leaves and fruits of several plants, many of which have traditionally been employed as remedies due to its diverse therapeutic activities. The objective of this in-depth analysis is to concentrate on Isorhamnetin by addressing its molecular insights as an effective anticancer compound and its synergistic activity with other anticancer drugs. The main contributors to Isorhamnetin's anti-malignant activities at the molecular level have been identified as alterations of a variety of signal transduction processes and transcriptional agents. These include ROS-mediated cell cycle arrest and apoptosis, inhibition of mTOR and P13K pathway, suppression of MEK1, PI3K, NF-κB, and Akt/ERK pathways, and inhibition of Hypoxia Inducible Factor (HIF)-1α expression. A significant number of in vitro and in vivo research studies have confirmed that it destroys cancerous cells by arresting cell cycle at the G2/M phase and S-phase, down-regulating COX-2 protein expression, PI3K, Akt, mTOR, MEK1, ERKs, and PI3K signaling pathways, and up-regulating apoptosis-induced genes (Casp3, Casp9, and Apaf1), Bax, Caspase-3, P53 gene expression and mitochondrial-dependent apoptosis pathway. Its ability to suppress malignant cells, evidence of synergistic effects, and design of drugs based on nanomedicine are also well supported to treat cancer patients effectively. Together, our findings establish a crucial foundation for understanding Isorhamnetin's underlying anti-cancer mechanism in cancer cells and reinforce the case for the requirement to assess more exact molecular signaling pathways relating to specific cancer and in vivo anti-cancer activities.


Subject(s)
Neoplasms , Quercetin , Humans , Quercetin/pharmacology , Quercetin/analogs & derivatives , Neoplasms/drug therapy , Neoplasms/pathology , Animals , Signal Transduction/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects
2.
Biomed Pharmacother ; 158: 114172, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36916399

ABSTRACT

Nanotechnology encompasses a wide range of devices derived from biology, engineering, chemistry, and physics, and this scientific field is composed of great collaboration among researchers from several fields. It has diverse implications notably smart sensing technologies, effective disease diagnosis, and sometimes used in treatment. In medical science, the implications of nanotechnology include the development of elements and devices that interact with the body at subcellular (i.e., molecular) levels exhibiting high sensitivity and specificity. There is a plethora of new chances for medical science and disease treatment to be discovered and exploited in the rapidly developing field of nanotechnology. In different sectors, nanomaterials are used just because of their special characteristics. Their large surface area of them enables higher reactivity with greater efficiency. Furthermore, special surface chemistry is displayed by nanomaterials which compare to conventional materials and facilitate the nanomaterials to decrease pollutants efficiently. Recently, nanomaterials are used in some countries to reduce the levels of contaminants in water, air, and soil. Moreover, nanomaterials are used in the cosmetics and medical industry, and it develops the drug discovery (DD) system. Among a huge number of nanomaterials, Cu, Ag, TiO2, ZnO, Fe3O4, and carbon nanotubes (CNTs) are extensively used in different industries for various purposes. This extensive review study has introduced the major scientific and technical features of nanotechnology, as well as some possible clinical applications and positive feedback in environmental waste management and drug delivery systems.


Subject(s)
Environmental Pollutants , Nanostructures , Nanotubes, Carbon , Nanotubes, Carbon/chemistry , Nanotechnology , Nanostructures/therapeutic use , Drug Delivery Systems
3.
Front Oncol ; 12: 883805, 2022.
Article in English | MEDLINE | ID: mdl-35924174

ABSTRACT

Vaginal cancer is a rare and uncommon disease that is rarely discussed. Although vaginal cancer traditionally occurs in older postmenopausal women, the incidence of high-risk human papillomavirus (HPV)-induced cancers is increasing in younger women. Cervical cancer cells contain high-risk human papillomavirus (HPV) E6 and E7 proteins and inhibiting HPV gene expression leads the cells to stop proliferating and enter senescence. As E6, and E7 protein promoted the carcinogenesis mechanism, and here not only regulate the cellular degradation of P53, and pRb but also enhances the cell proliferation along with E6 protein targets the p53 for breakdown and subsequently promote the apoptotic cell death, and DNA repair inhibition, that is indispensable to the continue the lifecycle of the HPV. As a synchronous or metachronous tumor, vaginal cancer is frequently found in combination with cervical cancer. It is uncertain what causes invasive female vaginal organ cancer. HPV type 16 is the most often isolated HPV type in female vaginal organ cancers. Due to cancer's rarity, case studies have provided the majority of etiologic findings. Many findings demonstrate that ring pessaries, chronic vaginitis, sexual behavior, birth trauma, obesity, vaginal chemical exposure, and viruses are all risk factors. Because of insufficient understanding and disease findings, we are trying to find the disease's mechanism with the available data. We also address different risk factors, therapy at various stages, diagnosis, and management of vaginal cancer in this review.

4.
J Pers Med ; 11(9)2021 Sep 06.
Article in English | MEDLINE | ID: mdl-34575665

ABSTRACT

BACKGROUND: SYK gene regulates the expression of SYK kinase (Spleen tyrosine kinase), an important non-receptor protein-tyrosine kinase for immunological receptor-mediated signaling, which is also considered a tumor growth metastasis initiator. An onco-informatics analysis was adopted to evaluate the expression and prognostic value of the SYK gene in colorectal cancer (CRC), the third most fatal cancer type; of late, it may be a biomarker as another targeted site for CRC. In addition, identify the potential phytochemicals that may inhibit the overexpression of the SYK kinase protein and minimize the human CRC. MATERIALS & METHODS: The differential expression of the SYK gene was analyzed using several transcriptomic databases, including Oncomine, UALCAN, GENT2, and GEPIA2. The server cBioPortal was used to analyze the mutations and copy number alterations, whereas GENT2, Gene Expression Profiling Interactive Analysis (GEPIA), Onco-Lnc, and PrognoScan were used to examine the survival rate. The protein-protein interaction network of SYK kinase and its co-expressed genes was conducted via Gene-MANIA. Considering the SYK kinase may be the targeted site, the selected phytochemicals were assessed by molecular docking using PyRx 0.8 packages. Molecular interactions were also observed by following the Ligplot+ version 2.2. YASARA molecular dynamics simulator was applied for the post-validation of the selected phytochemicals. RESULTS: Our result reveals an increased level of mRNA expression of the SYK gene in colorectal adenocarcinoma (COAD) samples compared to those in normal tissues. A significant methylation level and various genetic alterations recurrence of the SYK gene were analyzed where the fluctuation of the SYK alteration frequency was detected across different CRC studies. As a result, a lower level of SYK expression was related to higher chances of survival. This was evidenced by multiple bioinformatics platforms and web resources, which demonstrated that the SYK gene can be a potential biomarker for CRC. In this study, aromatic phytochemicals, such as kaempferol and glabridin that target the macromolecule (SYK kinase), showed higher stability than the controls, and we have estimated that these bioactive potential phytochemicals might be a useful option for CRC patients after the clinical trial. CONCLUSIONS: Our onco-informatics investigation suggests that the SYK gene can be a potential prognostic biomarker of CRC. On the contrary, SYK kinase would be a major target, and all selected compounds were validated against the protein using in-silico drug design approaches. Here, more in vitro and in vivo analysis is required for targeting SYK protein in CRC.

5.
Environ Sci Pollut Res Int ; 28(42): 59570-59593, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34510341

ABSTRACT

Emerging from Wuhan, China, SARS-CoV-2 is the new global threat that killed millions of people, and many are still suffering. This pandemic has not only affected people but also caused economic crisis throughout the world. Researchers have shown good progress in revealing the molecular insights of SARS-CoV-2 pathogenesis and developing vaccines, but effective treatment against SARS-CoV-2-infected patients are yet to be found. Several vaccines are available and used in many countries, while many others are still in clinical or preclinical studies. However, this involves a long-term process, considering the safety procedures and requirements and their long-term protection capacity and in different age groups are still questionable. Therefore, at present, the drug repurposing of the existing therapeutics previously designed against other viral diseases seems to be the only practical approach to mitigate the current situation. The safety of most of these therapeutic agents has already been tested. Recent clinical reports revealed promising therapeutic efficiency of several drugs such as remdesivir, tenofovir disoproxil fumarate, azithromycin, lopinavir/ritonavir, chloroquine, baricitinib, and cepharanthine. Besides, plasma therapies were used to treat patients and prevent fatal outcomes. Thus, in this article, we have summarized the epidemiological and clinical data from several clinical trials conducted since the beginning of the pandemic, emphasizing the efficiency of the known agents against SARS-CoV-2 and their harmful side effects on the human body as well as their environmental implications. This review shows a clear overview of the current pharmaceutical perspective on COVID-19 treatment.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , Antiviral Agents/pharmacology , Humans , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...