Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Virchows Arch ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713384

ABSTRACT

The proposed role of CDH1 (E-cadherin gene) methylation as a mechanism of gene inactivation in invasive lobular carcinoma (ILC) remains inconclusive. For many years, CDH1 promoter hypermethylation has been regarded as a mechanism for gene inactivation in ILC. However, this assumption has primarily relied on non-quantitative assays, which have reported CDH1 methylation frequencies ranging from 26 to 93% at CpG sites within the island region. Few studies employing quantitative methods and covering CpG island shores, regions of relatively low CpG density situated proximal to conventional promoter CpGs, have been conducted, revealing lower percentages of methylation ranging from 0 to 51%. Therefore, using the quantitative pyrosequencing method, we examined CDH1 methylation in the island region and shores in E-cadherin deficient ILC cases (15 with CDH1 mutation and 22 non-mutated), 19 cases of invasive breast carcinomas non-special type (IBC-NSTs), and five cases of usual ductal hyperplasia (UDH). Our analysis revealed CDH1 methylation frequencies ranging from 3 to 64%, with no significant increase in methylation levels in any group of ILCs (median = 12%) compared to IBC-NST (median = 15%). In addition, considering the poorly studied association between the number of tumor-infiltrating lymphocytes (TILs) and CDH1 methylation in breast cancer, we undertook a thorough analysis within our dataset. Our findings revealed a positive correlation between CDH1 methylation and the presence of TILs (r = 0.5; p-value < 0.05), shedding light on an aspect of breast cancer biology warranting further investigation. These findings challenge CDH1 methylation as a CDH1 inactivation mechanism in ILC and highlight TILs as a potential confounding factor in gene methylation.

3.
Int J Mol Sci ; 23(4)2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35216235

ABSTRACT

Due to abundant stroma and extracellular matrix, accompanied by lack of vascularization, pancreatic ductal adenocarcinoma (PDAC) is characterized by severe hypoxia. Epigenetic regulation is likely one of the mechanisms driving hypoxia-induced epithelial-to-mesenchymal transition (EMT), responsible for PDAC aggressiveness and dismal prognosis. To verify the role of DNA methylation in this process, we assessed gene expression and DNA methylation changes in four PDAC cell lines. BxPC-3, MIA PaCa-2, PANC-1, and SU.86.86 cells were exposed to conditioned media containing cytokines and inflammatory molecules in normoxic and hypoxic (1% O2) conditions for 2 and 6 days. Cancer Inflammation and Immunity Crosstalk and Human Epithelial to Mesenchymal Transition RT² Profiler PCR Arrays were used to identify top deregulated inflammatory and EMT-related genes. Their mRNA expression and DNA methylation were quantified by qRT-PCR and pyrosequencing. BxPC-3 and SU.86.86 cell lines were the most sensitive to hypoxia and inflammation. Although the methylation of gene promoters correlated with gene expression negatively, it was not significantly influenced by experimental conditions. However, DNA methyltransferase inhibitor decitabine efficiently decreased DNA methylation up to 53% and reactivated all silenced genes. These results confirm the role of DNA methylation in EMT-related gene regulation and uncover possible new targets involved in PDAC progression.


Subject(s)
Carcinoma, Pancreatic Ductal/genetics , DNA Methylation/genetics , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic/genetics , Gene Expression/genetics , Pancreatic Neoplasms/genetics , Biomarkers, Tumor/genetics , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Epigenesis, Genetic/genetics , Humans , Pancreatic Neoplasms/pathology , Prognosis , Pancreatic Neoplasms
4.
Int J Mol Sci ; 22(19)2021 Oct 04.
Article in English | MEDLINE | ID: mdl-34639089

ABSTRACT

Uveal melanoma (UM) is an ocular tumor with a dismal prognosis. Despite the availability of precise molecular and cytogenetic techniques, clinicopathologic features with limited accuracy are widely used to predict metastatic potential. In 51 UM tissues, we assessed a correlation between the expression of nine proteins evaluated by immunohistochemistry (IHC) (Melan-A, S100, HMB45, Cyclin D1, Ki-67, p53, KIT, BCL2, and AIFM1) and the presence of UM-specific chromosomal rearrangements measured by multiplex ligation-dependent probe amplification (MLPA), to find IHC markers with increased prognostic information. Furthermore, mRNA expression and DNA methylation values were extracted from the whole-genome data, achieved by analyzing 22 fresh frozen UM tissues. KIT positivity was associated with monosomy 3, increasing the risk of poor prognosis more than 17-fold (95% CI 1.53-198.69, p = 0.021). A strong negative correlation was identified between mRNA expression and DNA methylation values for 12 of 20 analyzed positions, five located in regulatory regions of the KIT gene (r = -0.658, p = 0.001; r = -0.662, p = 0.001; r = -0.816; p < 0.001; r = -0.689, p = 0.001; r = -0.809, p < 0.001, respectively). DNA methylation ß values were also inversely associated with KIT protein expression (p = 0.001; p = 0.001; p = 0.015; p = 0.025; p = 0.002). Our findings, showing epigenetic deregulation of KIT expression, may contribute to understanding the past failure to therapeutically target KIT in UM.


Subject(s)
Biomarkers, Tumor/genetics , DNA Methylation , Gene Expression Regulation, Neoplastic , Melanoma/genetics , Proto-Oncogene Proteins c-kit/genetics , Uveal Neoplasms/genetics , Adult , Aged , Aged, 80 and over , Combined Modality Therapy , Female , Follow-Up Studies , Humans , Male , Melanoma/pathology , Melanoma/therapy , Middle Aged , Multiplex Polymerase Chain Reaction , Prognosis , Uveal Neoplasms/pathology , Uveal Neoplasms/therapy
5.
Int J Mol Sci ; 23(1)2021 Dec 22.
Article in English | MEDLINE | ID: mdl-35008529

ABSTRACT

BACKGROUND: Dissemination of breast cancer (BC) cells through the hematogenous or lymphogenous vessels leads to metastatic disease in one-third of BC patients. Therefore, we investigated the new prognostic features for invasion and metastasis. METHODS: We evaluated the expression of miRNAs and epithelial-to-mesenchymal transition (EMT) genes in relation to CDH1/E-cadherin changes in samples from 31 patients with invasive ductal BC including tumor centrum (TU-C), tumor invasive front (TU-IF), lymph node metastasis (LNM), and CD45-depleted blood (CD45-DB). Expression of miRNA and mRNA was quantified by RT-PCR arrays and associations with clinico-pathological characteristics were statistically evaluated by univariate and multivariate analysis. RESULTS: We did not verify CDH1 regulating associations previously described in cell lines. However, we did detect extremely high ZEB1 expression in LNMs from patients with distant metastasis, but without regulation by miR-205-5p. Considering the ZEB1 functions, this overexpression indicates enhancement of metastatic potential of lymphogenously disseminated BC cells. In CD45-DB samples, downregulated miR-205-5p was found in those expressing epithelial and/or mesenchymal markers (CTC+) that could contribute to insusceptibility and survival of hematogenously disseminated BC cells mediated by increased expression of several targets including ZEB1. CONCLUSIONS: miR-205-5p and potentially ZEB1 gene are promising candidates for markers of metastatic potential in ductal BC.


Subject(s)
Breast Neoplasms/genetics , Carcinoma, Ductal, Breast/genetics , Down-Regulation/genetics , MicroRNAs/genetics , Up-Regulation/genetics , Zinc Finger E-box-Binding Homeobox 1/genetics , 3' Untranslated Regions/genetics , Adult , Aged , Aged, 80 and over , Breast Neoplasms/pathology , Carcinoma, Ductal, Breast/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Epithelial-Mesenchymal Transition/genetics , Female , Gene Expression Regulation, Neoplastic/genetics , Humans , Lymphatic Metastasis/genetics , Lymphatic Metastasis/pathology , Middle Aged
6.
Int J Mol Sci ; 21(24)2020 Dec 17.
Article in English | MEDLINE | ID: mdl-33348918

ABSTRACT

Despite outstanding advances in diagnosis and the treatment of primary uveal melanoma (UM), nearly 50% of UM patients develop metastases via hematogenous dissemination, driven by the epithelial-mesenchymal transition (EMT). Despite the failure in UM to date, a liquid biopsy may offer a feasible non-invasive approach for monitoring metastatic disease progression and addressing protracted dormancy. To detect circulating tumor cells (CTCs) in UM patients, we evaluated the mRNA expression of EMT-associated transcription factors in CD45-depleted blood fraction, using qRT-PCR. ddPCR was employed to assess UM-specific GNA11, GNAQ, PLCß4, and CYSLTR2 mutations in plasma DNA. Moreover, microarray analysis was performed on total RNA isolated from tumor tissues to estimate the prognostic value of EMT-associated gene expression. In total, 42 primary UM and 11 metastatic patients were enrolled. All CD45-depleted samples were negative for CTC when compared to the peripheral blood fraction of 60 healthy controls. Tumor-specific mutations were detected in the plasma of 21.4% patients, merely, in 9.4% of primary UM, while 54.5% in metastatic patients. Unsupervised hierarchical clustering of differentially expressed EMT genes showed significant differences between monosomy 3 and disomy 3 tumors. Newly identified genes can serve as non-invasive prognostic biomarkers that can support therapeutic decisions.


Subject(s)
Biomarkers, Tumor/genetics , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Melanoma/genetics , Neoplastic Cells, Circulating/pathology , Uveal Neoplasms/genetics , Adult , Aged , Aged, 80 and over , Case-Control Studies , Chromosome Deletion , Chromosomes, Human, Pair 3/genetics , DNA, Neoplasm/analysis , DNA, Neoplasm/genetics , Female , Follow-Up Studies , Humans , Liquid Biopsy , Male , Melanoma/secondary , Melanoma/therapy , Middle Aged , Neoplastic Cells, Circulating/metabolism , Prognosis , Uveal Neoplasms/secondary , Uveal Neoplasms/therapy
7.
Cancer Sci ; 110(5): 1695-1704, 2019 May.
Article in English | MEDLINE | ID: mdl-30815959

ABSTRACT

A Disintegrin And Metalloprotease 23 (ADAM23), a member of the ADAM family, is involved in neuronal differentiation and cancer. ADAM23 is considered a possible tumor suppressor gene and is frequently downregulated in various types of malignancies. Its epigenetic silencing through promoter hypermethylation was observed in breast cancer (BC). In the present study, we evaluated the prognostic significance of ADAM23 promoter methylation for hematogenous spread and disease-free survival (DFS). Pyrosequencing was used to quantify ADAM23 methylation in tumors of 203 BC patients. Presence of circulating tumor cells (CTC) in their peripheral blood was detected by quantitative RT-PCR. Expression of epithelial (KRT19) or mesenchymal (epithelial-mesenchymal transition [EMT]-inducing transcription factors TWIST1, SNAI1, SLUG and ZEB1) mRNA transcripts was examined in CD45-depleted peripheral blood mononuclear cells. ADAM23 methylation was significantly lower in tumors of patients with the mesenchymal CTC (P = .006). It positively correlated with Ki-67 proliferation, especially in mesenchymal CTC-negative patients (P = .001). In low-risk patients, characterized by low Ki-67 and mesenchymal CTC absence, ADAM23 hypermethylation was an independent predictor of DFS (P = .006). Our results indicate that ADAM23 is likely involved in BC progression and dissemination of mesenchymal CTC. ADAM23 methylation has the potential to function as a novel prognostic marker and therapeutic target.


Subject(s)
ADAM Proteins/genetics , ADAM Proteins/metabolism , Breast Neoplasms/genetics , DNA Methylation , Neoplastic Cells, Circulating/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Breast Neoplasms/metabolism , Disease-Free Survival , Down-Regulation , Epigenesis, Genetic , Epithelial-Mesenchymal Transition , Female , Gene Expression Regulation, Neoplastic , Humans , Ki-1 Antigen/metabolism , Prognosis , Promoter Regions, Genetic , Sequence Analysis, DNA
8.
BMC Cancer ; 18(1): 875, 2018 Sep 06.
Article in English | MEDLINE | ID: mdl-30189837

ABSTRACT

BACKGROUND: In breast cancer (BC), deregulation of DNA methylation leads to aberrant expressions and functions of key regulatory genes. In our study, we investigated the relationship between the methylation profiles of genes associated with cancer invasivity and clinico-pathological parameters. In detail, we studied differences in the methylation levels between BC patients with haematogenous and lymphogenous cancer dissemination. METHODS: We analysed samples of primary tumours (PTs), lymph node metastases (LNMs) and peripheral blood cells (PBCs) from 59 patients with sporadic disseminated BC. Evaluation of the DNA methylation levels of six genes related to invasivity, ADAM23, uPA, CXCL12, TWIST1, SNAI1 and SNAI2, was performed by pyrosequencing. RESULTS: Among the cancer-specific methylated genes, we found lower methylation levels of the SNAI2 gene in histologic grade 3 tumours (OR = 0.61; 95% CI, 0.39-0.97; P = 0.038) than in fully or moderately differentiated cancers. We also evaluated the methylation profiles in patients with different cancer cell dissemination statuses (positivity for circulating tumour cells (CTCs) and/or LNMs). We detected the significant association between reduced DNA methylation of ADAM23 in PTs and presence of CTCs in the peripheral blood of patients (OR = 0.45; 95% CI, 0.23-0.90; P = 0.023). CONCLUSION: The relationships between the decreased methylation levels of the SNAI2 and ADAM23 genes and cancer de-differentiation and haematogenous dissemination, respectively, indicate novel functions of those genes in the invasive processes. After experimental validation of the association between the lower values of SNAI2 and ADAM23 methylation and clinical features of aggressive BCs, these methylation profiles could improve the management of metastatic disease.


Subject(s)
ADAM Proteins/genetics , Breast Neoplasms/genetics , Breast Neoplasms/pathology , DNA Methylation , Snail Family Transcription Factors/genetics , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor , Case-Control Studies , Cell Line, Tumor , Female , Humans , Middle Aged , Neoplasm Grading , Neoplasm Metastasis , Neoplasm Staging
9.
Oncotarget ; 8(44): 77369-77384, 2017 Sep 29.
Article in English | MEDLINE | ID: mdl-29100393

ABSTRACT

Deregulated expression of microRNAs has the oncogenic or tumor suppressor function in cancer. Since miRNAs in plasma are highly stable, their quantification could contribute to more precise cancer diagnosis, prognosis and therapy prediction. We have quantified expression of seven oncomiRs, namely miR-17/92 cluster (miR-17, miR-18a, miR-19a and miR-20a), miR-21, miR-27a and miR-155, in plasma of 137 breast cancer (BC) patients. We detected down-regulation of six miRNAs in patients with invasive BC compared to controls; however, only miR-20a and miR-27a down-regulations were statistically significant. Comparing miRNA expression between early and advanced stages of BC, we observed statistically significant decrease of miR-17 and miR-19a. We identified down-regulation of miR-17 and miR-20a in patients with clinical parameters of advanced BC (lymph node metastasis, tumor grade 3, circulating tumor cells, higher Ki-67-related proliferation, hormone receptor negativity and HER2 amplification), when compared to controls. Moreover, decreased level of miR-17 was found from low to high grade. Therefore, miR-17 could represent an indicator of advanced BC. Down-regulated miR-27a expression levels were observed in all clinical categories regardless of tumor progression. Hence, miR-27a could be used as a potential diagnostic marker for BC. Our data indicates that any changes in miRNA expression levels in BC patients in comparison to controls could be highly useful for cancer-associated pathology discrimination. Moreover, dynamics of miRNA expression changes could be used for BC progression monitoring.

10.
Transl Oncol ; 9(3): 184-90, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27267835

ABSTRACT

Circulating tumor cells (CTCs) are independent prognostic factors in the primary and metastatic breast cancer patients and play crucial role in hematogenous tumor dissemination. The aim of this study was to correlate the presence of CTCs in peripheral blood with the expression of proteins in tumor tissue that have a putative role in regulation of cell growth and metastatic potential. This prospective study included 203 primary breast cancer patients treated by definitive surgery. CTCs were detected by quantitative real-time PCR for the expression of epithelial (CK19) or epithelial-to-mesenchymal transition-inducing transcription factor genes (TWIST1, SNAIL1, SLUG, and ZEB1). Expression of APC, ADAM23, CXCL12, E-cadherin, RASSF1, SYK, TIMP3, BRMS1, and SOCS1 proteins in primary breast tumor tissue was evaluated by immunohistochemistry. CTCs with epithelial markers were found in 17 (9.2%) patients. Their occurrence was associated with inhibition of SOCS1 expression (odds ratio [OR] = 0.07; 95% confidence interval [CI], 0.03-0.13; P < .001). CTCs with positive epithelial-to-mesenchymal transition markers were detected in 30 (15.8%) patients; however, no association with analyzed protein expressions was found. Overall, CTCs were detected in 44 (22.9%) patients. Presence of any CTC marker was significantly associated with positive CXCL12 expression (OR = 3.08; 95% CI, 1.15-8.26; P = .025) and lack of SOCS1 expression (OR = 0.10; 95% CI, 0.04-0.25; P < .001) in patient's tumor tissues. As both CXCL12 and SOCS1 proteins are involved in cytokine signaling, our results provide support for the hypothesis that aberrant signaling cross talk between cytokine and chemokine responses could have an important role in hematogenous dissemination of tumor cells in breast cancer.

11.
Transl Res ; 165(6): 717-30, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25620615

ABSTRACT

More than 25% of the patients with breast cancer (BC) develop metastatic disease. In the present study, we investigated the relationship between DNA methylation levels in genes regulating cell growth, invasiveness, and metastasis and advanced BCs and evaluated the clinical utility of methylation profiles for detecting metastatic potential. Pyrosequencing was used to quantify methylation levels in 11 cancer-associated genes in primary tumors (PTs), lymph node metastases (LNMs), plasma (PL), and blood cells from 206 patients with invasive BC. Protein expression was evaluated using immunohistochemistry. PTs showed hypermethylation of A isoform of the RAS-association domain family 1 (RASSF1A), adenomatous polyposis coli (APC), chemokine C-X-C motif ligand 12 (CXCL12), and disintegrin and metalloprotease domain 23 (ADAM23) (means 38.98%, 24.84%, 12.04%, and 10.01%, respectively). Positive correlations were identified between methylations in PTs and LNMs, but not between PL and PTs. The cumulative methylation of PTs and LNMs manifested similar spectrums of methylated genes that indicate the maintaining of aberrant methylation during breast tumorigenesis. Significantly increased methylation levels in RASSF1A, APC, CXCL12, and ADAM23 were found in estrogen receptor (ER) positive BCs in comparison with ER negative cases. Regarding these results, the evaluation of DNA methylation could be more informative in testing of patients with ER positive BC. The risk for LNMs development and higher proliferation of cancer cells measured through Ki-67 expression was increased by hypermethylation of CXCL12 and ADAM23, respectively. Therefore, the quantification of CXCL12 and ADAM23 methylation could be useful for the prediction of advanced stage of BC.


Subject(s)
ADAM Proteins/genetics , Breast Neoplasms/genetics , Chemokine CXCL12/genetics , DNA Methylation , Biomarkers, Tumor/metabolism , Breast Neoplasms/pathology , Female , Humans , Middle Aged
12.
Transl Oncol ; 6(3): 297-304, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23730409

ABSTRACT

The aim of this study was to investigate the relationship between the promoter methylation in five cancer-associated genes and clinicopathologic features for identification of molecular markers of tumor metastatic potential and hormone therapy response efficiency in breast cancer. The methylation levels in paraffin-embedded tumor tissues, plasma, and blood cells from 151 sporadic breast cancer patients and blood samples of 50 controls were evaluated by quantitative multiplex methylation-specific polymerase chain reaction. DNA methylation of RAS-association domain family member 1 (RASSF1A), estrogen receptor 1 (ESR1), cadherin 1, type 1, E-cadherin (CDH1), TIMP metallopeptidase inhibitor 3 (TIMP3) and spleen tyrosine kinase (SYK) genes was detected in the tumors of 124, 19, 15, 15, and 6 patients with mean levels of 48.45%, 3.81%, 2.36%, 27.55%, and 10.81%, respectively. Plasma samples exhibited methylation in the same genes in 25, 10, 15, 17, and 3 patients with levels of 22.54%, 17.20%, 22.87%, 31.93%, and 27.42%, respectively. Cumulative methylation results confirmed different spectra in tumor and plasma samples. Simultaneous methylation in tumors and plasma were shown in less than 17% of patients. RASSF1A methylation levels in tumor samples statistically differ according to tumor size (P = .029), estrogen receptor (ER) and progesterone receptor (PR) status (P = .000 and P = .004), and immunohistochemical subtype (P = .000). Moreover, the positive correlation was found between RASSF1A methylation levels and percentage of cancer cells expressing ER and PR. The direct relationship between RASSF1A promoter methylation and expression of ER could aid the prognosis of hormonal therapy response.

13.
Cancer Biomark ; 10(1): 13-26, 2011.
Article in English | MEDLINE | ID: mdl-22297548

ABSTRACT

Breast cancer is the most common cancer in women worldwide, representing 28.2% of all female malignancies. In addition to genetic changes, epigenetic events, as aberrant DNA methylation and histone modification, are responsible for cancer development. Many tumour suppressor genes are inactivated by DNA hypermethylation, which could be utilized for identification of new epigenetic biomarkers. To investigate the relation between DNA methylation level and breast cancer progression, we analysed DNA methylation in RASSF1A and CDH1 promoters using quantitative multiplex methylation-specific PCR in paraffin-embedded tumour tissues and blood samples from 92 breast cancer patients and 50 controls, respectively. The associations between RASSF1A and CDH1 methylation levels and clinico-pathological parameters were tested by Kruskal-Wallis and van der Waerden ANOVA tests. Out of 92 breast cancer patients, 76 (82.6%) manifested various levels of RASSF1A (range from 1.20 to 92.63%) and 20 (21.7%) of CDH1 (range from 1.20 to 79.62%) methylation. However, no methylation was found in 50 controls. Increasing trends in RASSF1A methylation were observed in tumour size, lymph node status and TNM stage, but only CDH1 methylation levels showed statistically significant differences between the patient subgroups in lymph node status and IHC subtype. Overall, stable relatively high RASSF1A methylation could be utilised as universal tumour marker and the less frequent but highly methylated CDH1 promoter can serve for identification of potentially metastasising tumours.


Subject(s)
Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Cadherins/genetics , Carcinoma, Ductal, Breast/genetics , Carcinoma, Lobular/genetics , DNA Methylation , Tumor Suppressor Proteins/genetics , Aged , Analysis of Variance , Antigens, CD , Breast Neoplasms/diagnosis , Breast Neoplasms/pathology , Calibration , Carcinoma, Ductal, Breast/diagnosis , Carcinoma, Ductal, Breast/pathology , Carcinoma, Lobular/diagnosis , Carcinoma, Lobular/pathology , Case-Control Studies , Early Detection of Cancer/methods , Epigenesis, Genetic , Female , Genetic Association Studies , Humans , Lymphatic Metastasis , Middle Aged , Promoter Regions, Genetic , Real-Time Polymerase Chain Reaction/standards , Reference Standards , Tumor Burden
SELECTION OF CITATIONS
SEARCH DETAIL
...