Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroimage ; 222: 117075, 2020 11 15.
Article in English | MEDLINE | ID: mdl-32585348

ABSTRACT

Conscious perception of the emotional valence of faces has been proposed to involve top-down and bottom-up information processing. Yet, the underlying neuronal mechanisms of these two processes and the implementation of their cooperation is still unclear. According to the global workspace model, higher level cognitive processing of visual emotional stimuli relies on both bottom-up and top-down processing. Using masking stimuli in a visual backward masking paradigm with delays at the perceptual threshold, at which stimuli can only partly be detected, suggests that only top-down processing differs between correctly and incorrectly perceived stimuli, while bottom-up visual processing is not compromised and comparable for both conditions. Providing visual stimulation near the perceptual threshold in the backward masking paradigm thus enabled us to compare differences in top-down modulation of the visual information of correctly and incorrectly recognized facial emotions in 12 healthy individuals using magnetoencephalography (MEG). For correctly recognized facial emotions, we found a right-hemispheric fronto-parietal network oscillating in the high-beta and low-gamma band and exerting top-down control as determined by the causality measure of phase slope index (PSI). In contrast, incorrect recognition was associated with enhanced coupling in the gamma band between left frontal and right parietal regions. Our results indicate that the perception of emotional face stimuli relies on the right-hemispheric dominance of synchronized fronto-parietal gamma-band activity.


Subject(s)
Beta Rhythm/physiology , Facial Recognition/physiology , Frontal Lobe/physiology , Functional Neuroimaging , Gamma Rhythm/physiology , Magnetoencephalography , Nerve Net/physiology , Parietal Lobe/physiology , Adult , Cortical Synchronization/physiology , Female , Functional Laterality/physiology , Functional Neuroimaging/methods , Humans , Magnetoencephalography/methods , Male , Nerve Net/diagnostic imaging , Perceptual Masking/physiology , Young Adult
2.
Article in English | MEDLINE | ID: mdl-32132905

ABSTRACT

Natural exploration of textures involves active sensing, i.e., voluntary movements of tactile sensors (e.g., human fingertips or rodent whiskers) across a target surface. Somatosensory input during moving tactile sensors varies according to both the movement and the surface texture. Combining motor and sensory information, the brain is capable of extracting textural features of the explored surface. Despite the ecological relevance of active sensing, psychophysical studies on active touch are largely missing. One reason for the lack of informative studies investigating active touch is the considerable challenge of assembling an appropriate experimental setup. A possible solution might be in the realm of virtual tactile reality that provides tactile finger stimulation depending on the position of the hand and the simulated texture of a target surface. In addition to rigorous behavioral studies, the investigation of the neuronal mechanisms of active tactile sensing in humans is highly warranted, requiring neurophysiological experiments using electroencephalography (EEG), magnetoencephalography (MEG) and/or functional magnetic resonance imaging (fMRI). However, current neuroimaging techniques impose specific requirements on the tactile stimulus delivery equipment in terms of compatibility with the neurophysiological methods being used. Here, we present a user-friendly, MEG compatible, tactile virtual reality simulator. The simulator consists of a piezo-electric tactile stimulator capable of independently protruding 16 plastic pistons of 1 mm diameter arranged in a 4 × 4 matrix. The stimulator delivers a spatial pattern of tactile stimuli to the tip of a finger depending on the position of the finger moving across a 2-dimensional plane. In order to demonstrate the functionality of the tactile virtual reality, we determined participants' detection thresholds in active and passive touch conditions. Thresholds in both conditions were higher than reported in the literature. It could well be that the processing of the piston-related stimulation was masked by the sensory input generated by placing the finger on the scanning probe. More so, the thresholds for both the active and passive tasks did not differ significantly. In further studies, the noise introduced by the stimulator in neuromagnetic recordings was quantified and somatosensory evoked fields for active and passive touch were recorded. Due to the compatibility of the stimulator with neuroimaging techniques such as MEG, and based on the feasibility to record somatosensory-related neuromagnetic brain activity the apparatus has immense potential for the exploration of the neural underpinnings of active tactile perception.

3.
IEEE Trans Neural Syst Rehabil Eng ; 26(11): 2226-2230, 2018 11.
Article in English | MEDLINE | ID: mdl-30273154

ABSTRACT

The central nervous system exerts control over the activation of muscles via a dense network of nerve fibers targeting each individual muscle. There are numerous clinical situations where a detailed assessment of the nerve-innervation pattern is required for diagnosis and treatment. Especially, deep muscles are hard to examine and are as yet only accessible by uncomfortable and painful needle EMG techniques. Just recently, a new and flexible method and device became available to measure the small magnetic fields generated by the contraction of the muscles: optically pumped magnetometers (OPMs). OPMs are small devices that measure the zero-field level crossing resonance of spin-polarized rubidium atoms. The resonance is dependent on the local magnetic field strength, and therefore, these devices are able to measure small magnetic fields in the range of a few hundred femtoteslas. In this paper, we demonstrate as a proof of principle that OPMs can be used to measure the low magnetic fields generated by small hand muscles after electric stimulation of the ulnar or median nerve. We show that using this technique, we are able to record differential innervation pattern of small palmar hand muscles and are capable of distinguishing between areas innervated by the median or ulnar nerve. We expect that the new approach will have an important impact on the diagnosis of nerve entrapment syndromes, spinal cord lesions, and neuromuscular diseases.


Subject(s)
Electromagnetic Fields , Hand/innervation , Myography/instrumentation , Electric Stimulation , Hand/physiology , Humans , Male , Median Nerve/physiology , Middle Aged , Muscle, Skeletal/physiology , Musculoskeletal Physiological Phenomena , Rubidium , Ulnar Nerve/physiology
4.
Hum Brain Mapp ; 38(9): 4353-4369, 2017 09.
Article in English | MEDLINE | ID: mdl-28580720

ABSTRACT

Bimanual movements involve the interactions between both primary motor cortices. These interactions are assumed to involve phase-locked oscillatory brain activity referred to as inter-hemispheric functional coupling. So far, inter-hemispheric functional coupling has been investigated as a function of motor performance. These studies report mostly a negative correlation between the performance in motor tasks and the strength of functional coupling. However, correlation might not reflect a causal relationship. To overcome this limitation, we opted for an alternative approach by manipulating the strength of inter-hemispheric functional coupling and assessing bimanual motor performance as a dependent variable. We hypothesize that an increase/decrease of functional coupling deteriorates/facilitates motor performance in an out-of-phase bimanual finger-tapping task. Healthy individuals were trained to volitionally regulate functional coupling in an operant conditioning paradigm using real-time magnetoencephalography neurofeedback. During operant conditioning, two discriminative stimuli were associated with upregulation and downregulation of functional coupling. Effects of training were assessed by comparing motor performance prior to (pre-test) and after the training (post-test). Participants receiving contingent feedback learned to upregulate and downregulate functional coupling. Comparing motor performance, as indexed by the ratio of tapping speed for upregulation versus downregulation trials, no change was found in the control group between pre- and post-test. In contrast, the group receiving contingent feedback evidenced a significant decrease of the ratio implicating lower tapping speed with stronger functional coupling. Results point toward a causal role of inter-hemispheric functional coupling for the performance in bimanual tasks. Hum Brain Mapp 38:4353-4369, 2017. © 2017 Wiley Periodicals, Inc.


Subject(s)
Functional Laterality/physiology , Hand/physiology , Learning/physiology , Motor Cortex/physiology , Motor Skills/physiology , Neurofeedback , Adult , Conditioning, Operant/physiology , Female , Humans , Magnetoencephalography/methods , Male , Neurofeedback/methods , Neurofeedback/physiology , Neuronal Plasticity/physiology , Volition
SELECTION OF CITATIONS
SEARCH DETAIL
...