Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Cancers (Basel) ; 16(6)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38539556

ABSTRACT

Pediatric pilocytic astrocytoma (PA) is the most common brain tumor in children. Complete resection provides a favorable prognosis, except for unresectable PA forms. There is an incomplete understanding of the molecular and cellular pathogenesis of PA. Potential biomarkers for PA patients, especially the non-BRAF-mutated ones are needed. Cerebrospinal fluid (CSF) is a valuable source of brain tumor biomarkers. Extracellular vesicles (EVs), circulating in CSF, express valuable disease targets. These can be isolated from CSF from waste extraventricular drainage (EVD). We analyzed the proteome of EVD CSF from PA, congenital hydrocephalus (CH, non-tumor control), or medulloblastoma (MB, unrelated tumoral control) patients. A total of 3072 proteins were identified, 47.1%, 65.6%, and 86.2% of which were expressed in the unprocessed total and in its large-EV (LEV), and small-EV (SEV) fractions. Bioinformatics identified 50 statistically significant proteins in the comparison between PA and HC, and PA and MB patients, in the same fractions. Kinase enrichment analysis predicted five enriched kinases involved in signaling. Among these, only Cyclin-dependent kinase 2 (CDK2) kinase was overexpressed in PA samples. PLS-DA highlighted the inactive carboxypeptidase-like protein X2 (CPXM2) and aquaporin-4 (AQP4) as statistically significant in all the comparisons, with CPXM2 being overexpressed (validated by ELISA and Western blot) and AQP4 downregulated in PA. These proteins were considered the most promising potential biomarkers for discriminating among pilocytic astrocytoma and unrelated tumoral (MB) or non-tumoral conditions in all the fractions examined, and are proposed to be prospectively validated in the plasma for translational medicine applications.

2.
Clin Kidney J ; 17(1): sfad228, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38213493

ABSTRACT

Research on membranous nephropathy truly exploded in the last 15 years. This happened because of the application of new techniques (laser capture microdissection, mass spectrometry, protein G immunoprecipitation, arrays) to the study of its pathogenesis. After the discovery of PLA2R as the major target antigen, many other antigens were identified and others are probably ongoing. Clinical and pathophysiology rebounds of new discoveries are relevant in terms of diagnosis and prognosis and it is time to make a first assessment of the innovative issues. In terms of classification, target antigens can be divided into: 'membrane antigens' and 'second wave' antigens. The first group consists of antigens constitutionally expressed on the podocyte membrane (as PLA2R) that may become a target of an autoimmune process because of perturbation of immune-tolerance. 'Second wave' antigens are antigens neo-expressed by the podocyte or by infiltrating cells after a stressing event: this allows the immune system to produce antibodies against them that intensify and maintain glomerular damage. With this abundance of target antigens it is not possible, at the moment, to test all antibodies at the bedside. In the absence of this possibility, the role of histological evaluation is still irreplaceable.

3.
Biomolecules ; 13(12)2023 11 30.
Article in English | MEDLINE | ID: mdl-38136601

ABSTRACT

Cerebrospinal fluid (CSF) is a biochemical-clinical window into the brain. Unfortunately, its wide dynamic range, low protein concentration, and small sample quantity significantly limit the possibility of using it routinely. Extraventricular drainage (EVD) of CSF allows us to solve quantitative problems and to study the biological role of extracellular vesicles (EVs). In this study, we implemented bioinformatic analysis of our previous data of EVD of CSF and its EVs obtained from congenital hydrocephalus with the aim of identifying a comprehensive list of potential tumor and non-tumor biomarkers of central nervous system diseases. Among all proteins identified, those enriched in EVs are associated with synapses, synaptosomes, and nervous system diseases including gliomas, embryonal tumors, and epilepsy. Among these EV-enriched proteins, given the broad consensus present in the recent scientific literature, we validated syntaxin-binding protein 1 (STXBP1) as a marker of malignancy in EVD of CSF and its EVs from patients with pilocytic astrocytoma and medulloblastoma. Our results show that STXBP1 is negatively enriched in EVs compared to non-tumor diseases and its downregulation correlates with adverse outcomes. Further experiments are needed to validate this and other EV markers in the blood of pediatric patients for translational medicine applications.


Subject(s)
Central Nervous System Diseases , Extracellular Vesicles , Child , Humans , Biomarkers/metabolism , Brain/metabolism , Central Nervous System Diseases/metabolism , Extracellular Vesicles/metabolism , Proteomics/methods
4.
Front Immunol ; 14: 1213203, 2023.
Article in English | MEDLINE | ID: mdl-37705972

ABSTRACT

Nephrotic syndrome affects about 2-7 per 100,000 children yearly and accounts for less than 15% of end stage kidney disease. Steroids still represent the cornerstone of therapy achieving remission in 75-90% of the cases The remaining part result as steroid resistant nephrotic syndrome, characterized by the elevated risk of developing end stage kidney disease and frequently presenting disease recurrence in case of kidney transplant. The pathogenesis of nephrotic syndrome is still far to be elucidated, however, efficacy of immune treatments provided the basis to suggest the involvement of the immune system in the pathogenesis of the disease. Based on these substrates, more immune drugs, further than steroids, were administered in steroid resistant nephrotic syndrome, such as antiproliferative and alkylating agents or calcineurin inhibitors. However, such treatments failed in inducing a sustained remission. In last two decades, the developments of monoclonal antibodies, including the anti-CD20 rituximab and inhibitor of B7-1 abatacept, represented a valid opportunity of treatment. However, also the effectiveness of biologics resulted limited. We here propose a new hypothesis-driven treatment based on the combining administration of rituximab with the anti-CD38 monoclonal antibody daratumumab (NCT05704400), sustained by the hypothesis to target the entire B-cells subtypes pool, including the long-lived plasmacells.


Subject(s)
Biological Products , Kidney Failure, Chronic , Nephrotic Syndrome , Child , Humans , Nephrotic Syndrome/drug therapy , Rituximab/therapeutic use , Abatacept
5.
Int J Mol Sci ; 24(18)2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37762695

ABSTRACT

Plastic pollution became a main challenge for human beings as demonstrated by the increasing dispersion of plastic waste into the environment. Microplastics (MPs) have become ubiquitous and humans are exposed daily to inhalation or ingestion of plastic microparticles. Recent studies performed using mainly spectroscopy or spectrometry-based techniques have shown astounding evidence for the presence of MPs in human tissues, organs and fluids. The placenta, meconium, breast milk, lung, intestine, liver, heart and cardiovascular system, blood, urine and cerebrovascular liquid are afflicted by MPs' presence and deposition. On the whole, obtained data underline a great heterogeneity among different tissue and organs of the polymers characterized and the microparticles' dimension, even if most of them seem to be below 50-100 µm. Evidence for the possible contribution of MPs in human diseases is still limited and this field of study in medicine is in an initial state. However, increasing studies on their toxicity in vitro and in vivo suggest worrying effects on human cells mainly mediated by oxidative stress, inflammation and fibrosis. Nephrological studies are insufficient and evidence for the presence of MPs in human kidneys is still lacking, but the little evidence present in the literature has demonstrated histological and functional alteration of kidneys in animal models and cytotoxicity through apoptosis, autophagy, oxidative stress and inflammation in kidney cells. Overall, the manuscript we report in this review recommends urgent further study to analyze potential correlations between kidney disease and MPs' exposure in human.


Subject(s)
Microplastics , Water Pollutants, Chemical , Animals , Humans , Microplastics/toxicity , Plastics/toxicity , Plastics/chemistry , Environmental Pollution , Kidney/chemistry , Fibrosis , Water Pollutants, Chemical/analysis
7.
J Autoimmun ; 132: 102900, 2022 10.
Article in English | MEDLINE | ID: mdl-36087539

ABSTRACT

Mechanisms for the generation of anti-dsDNA autoantibodies are still not completely elucidated. One theory states that dsDNA interacts for mimicry with antibodies raised versus other antigens but molecular features for mimicry are unknown. Here we show that, at physiological acid-base balance, anti-Annexin A1 binds IgG2 dsDNA in a competitive and dose-dependent way with Annexin A1 and that the competition between the two molecules is null at pH 9. On the other hand, these findings also show that dsDNA and Annexin A1 interact with their respective antibodies on a strictly pH-dependent basis: in both cases, the binding was minimal at pH 4 and maximal at pH9-10. The anionic charge of dsDNA is mainly conferred by the numerous phosphatidic residues. The epitope binding site of Annexin A1 for anti-Annexin A1 IgG2 was here characterized as a string of 34 amino acids at the NH2 terminus, 10 of which are anionic. Circulating levels of anti-dsDNA and anti-Annexin A1 IgG2 antibodies were strongly correlated in patients with systemic lupus erythematosus (n 496) and lupus nephritis (n 425) stratified for age, sex, etc. These results show that dsDNA competes with Annexin A1 for the binding with anti-Annexin A1 IgG2 on a dose and charged mediated base, being able to display an inhibition up to 75%. This study provides the first demonstration that dsDNA may interact with antibodies raised versus other anionic molecules (anti-Annexin A1 IgG2) because of charge mimicry and this interaction may contribute to anti-dsDNA antibodies generation.


Subject(s)
Annexin A1 , Lupus Erythematosus, Systemic , Lupus Nephritis , Humans , Antibodies, Antinuclear , Autoantibodies , Immunoglobulin G , Annexin A1/metabolism , DNA
8.
Metabolites ; 12(8)2022 Aug 05.
Article in English | MEDLINE | ID: mdl-36005596

ABSTRACT

Medulloblastoma (MB) is the most common pediatric malignant central nervous system tumor. Overall survival in MB depends on treatment tuning. There is aneed for biomarkers of residual disease and recurrence. We analyzed the proteome of waste cerebrospinal fluid (CSF) from extraventricular drainage (EVD) from six children bearing various subtypes of MB and six controls needing EVD insertion for unrelated causes. Samples included total CSF, microvesicles, exosomes, and proteins captured by combinatorial peptide ligand library (CPLL). Liquid chromatography-coupled tandem mass spectrometry proteomics identified 3560 proteins in CSF from control and MB patients, 2412 (67.7%) of which were overlapping, and 346 (9.7%) and 805 (22.6%) were exclusive. Multidimensional scaling analysis discriminated samples. The weighted gene co-expression network analysis (WGCNA) identified those modules functionally associated with the samples. A ranked core of 192 proteins allowed distinguishing between control and MB samples. Machine learning highlighted long-chain fatty acid transport protein 4 (SLC27A4) and laminin B-type (LMNB1) as proteins that maximized the discrimination between control and MB samples. Machine learning WGCNA and support vector machine learning were able to distinguish between MB versus non-tumor/hemorrhagic controls. The two potential protein biomarkers for the discrimination between control and MB may guide therapy and predict recurrences, improving the MB patients' quality of life.

10.
Int J Mol Sci ; 23(10)2022 May 18.
Article in English | MEDLINE | ID: mdl-35628461

ABSTRACT

Peritoneal dialysis (PD) represents the dialysis modality of choice for pediatric patients with end-stage kidney disease. Indeed, compared with hemodialysis (HD), it offers many advantages, including more flexibility, reduction of the risk of hospital-acquired infections, preservation of residual kidney function, and a better quality of life. However, despite these positive aspects, PD may be associated with several long-term complications that may impair both patient's general health and PD adequacy. In this view, chronic inflammation, caused by different factors, has a detrimental impact on the structure and function of the peritoneal membrane, leading to sclerosis and consequent PD failure both in adults and children. Although several studies investigated the complex pathogenic pathways underlying peritoneal membrane alterations, these processes remain still to explore. Understanding these mechanisms may provide novel approaches to improve the clinical outcome of pediatric PD patients through the identification of subjects at high risk of complications and the implementation of personalized interventions. In this review, we discuss the main experimental and clinical experiences exploring the potentiality of the proteomic analysis of peritoneal fluids and extracellular vesicles as a source of novel biomarkers in pediatric peritoneal dialysis.


Subject(s)
Extracellular Vesicles , Peritoneal Dialysis , Adult , Biomarkers , Child , Humans , Peritoneal Dialysis/adverse effects , Proteomics , Quality of Life , Renal Dialysis
11.
Sci Rep ; 11(1): 23144, 2021 11 30.
Article in English | MEDLINE | ID: mdl-34848816

ABSTRACT

Spontaneous preterm birth (PTB) complicates about 12% of pregnancies worldwide, remaining the main cause of neonatal morbidity and mortality. Spontaneous preterm birth PTBs is often caused by microbial-induced preterm labor, mediated by an inflammatory process threatening both maternal and newborn health. In search for novel predictive biomarkers of PTB and preterm prelabor rupture of the membranes (pPROM), and to improve understanding of infection related PTB, we performed an untargeted mass spectrometry discovery study on 51 bioptic mid zone amnion samples from premature babies. A total of 6352 proteins were identified. Bioinformatics analyses revealed a ranked core of 159 proteins maximizing the discrimination between the selected clinical stratification groups allowing to distinguish conditions of absent (FIR 0) from maximal Fetal Inflammatory Response (FIR 3) stratified in function of Maternal Inflammatory Response (MIR) grade. Matrix metallopeptidase-9 (MMP-9) was the top differentially expressed protein. Gene Ontology enrichment analysis of the core proteins showed significant changes in the biological pathways associated to inflammation and regulation of immune and infection response. Data suggest that the conditions determining PTB would be a transversal event, secondary to the maternal inflammatory response causing a breakdown in fetal-maternal tolerance, with fetal inflammation being more severe than maternal one. We also highlight matrix metallopeptidase-9 as a potential predictive biomarker of PTB that can be assayed in the maternal serum, for future investigation.


Subject(s)
Amnion/metabolism , Amnion/physiology , Biomarkers/metabolism , Proteomics/methods , Computational Biology/methods , Female , Gene Expression Regulation , Humans , Infant, Newborn , Infant, Premature , Inflammation , Intensive Care Units, Neonatal , Least-Squares Analysis , Mass Spectrometry/methods , Matrix Metalloproteinase 9/metabolism , Peptides/chemistry , Pregnancy , Premature Birth , Protein Binding , Proteome , Risk Assessment , Tissue Inhibitor of Metalloproteinase-1/metabolism
12.
Sci Rep ; 11(1): 20807, 2021 10 21.
Article in English | MEDLINE | ID: mdl-34675284

ABSTRACT

Peritoneal dialysis (PD) is the worldwide recognized preferred dialysis treatment for children affected by end-stage kidney disease (ESKD). However, due to the unphysiological composition of PD fluids, the peritoneal membrane (PM) of these patients may undergo structural and functional alterations, which may cause fibrosis. Several factors may accelerate this process and primary kidney disease may have a causative role. In particular, patients affected by steroid resistant primary focal segmental glomerulosclerosis, a rare glomerular disease leading to nephrotic syndrome and ESKD, seem more prone to develop peritoneal fibrosis. The mechanism causing this predisposition is still unrecognized. To better define this condition, we carried out, for the first time, a new comprehensive comparative proteomic mass spectrometry analysis of mesothelial exosomes from peritoneal dialysis effluent (PDE) of 6 pediatric patients with focal segmental glomerular sclerosis (FSGS) versus 6 patients affected by other primary renal diseases (No FSGS). Our omic study demonstrated that, despite the high overlap in the protein milieu between the two study groups, machine learning allowed to identify a core list of 40 proteins, with ANXA13 as most promising potential biomarker, to distinguish, in our patient population, peritoneal dialysis effluent exosomes of FSGS from No FSGS patients (with 100% accuracy). Additionally, the Weight Gene Co-expression Network Analysis algorithm identified 17 proteins, with PTP4A1 as the most statistically significant biomarker associated to PD vintage and decreased PM function. Altogether, our data suggest that mesothelial cells of FSGS patients are more prone to activate a pro-fibrotic machinery. The role of the proposed biomarkers in the PM pathology deserves further investigation. Our results need further investigations in a larger population to corroborate these findings and investigate a possible increased risk of PM loss of function or development of encapsulating peritoneal sclerosis in FSGS patients, thus to eventually carry out changes in PD treatment and management or implement new solutions.


Subject(s)
Exosomes/metabolism , Glomerulosclerosis, Focal Segmental/metabolism , Peritoneal Dialysis , Proteomics/methods , Child , Enzyme-Linked Immunosorbent Assay , Epithelium/metabolism , Glomerulosclerosis, Focal Segmental/therapy , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...