Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 62(50): e202314512, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37899308

ABSTRACT

Classical Crabbé type SN 2' substitutions of propargylic substrates has served as one of the standard methods for the synthesis of allenes. However, the stereospecific version of this transformation often requires either stoichiometric amounts of organocopper reagents or special functional groups on the substrates, and the chirality transfer efficiency is also capricious. Herein, we report a sustainable methodology for the synthesis of diverse 1,3-di and tri-substituted allenes by using a simple and cheap cellulose supported heterogeneous nanocopper catalyst (MCC-Amp-Cu(I/II)). This approach represents the first example of heterogeneous catalysis for the synthesis of chiral allenes. High yields and excellent enantiospecificity (up to 97 % yield, 99 % ee) were achieved for a wide range of di- and tri-substituted allenes bearing various functional groups. It is worth noting that the applied heterogeneous catalyst could be recycled at least 5 times without any reduced reactivity. To demonstrate the synthetic utility of the developed protocol, we have applied it to the total synthesis of several chiral allenic natural products.

3.
J Med Chem ; 65(17): 11485-11496, 2022 09 08.
Article in English | MEDLINE | ID: mdl-36005476

ABSTRACT

Myeloperoxidase is a promising therapeutic target for treatment of patients suffering from heart failure with preserved ejection fraction (HFpEF). We aimed to discover a covalent myeloperoxidase inhibitor with high selectivity for myeloperoxidase over thyroid peroxidase, limited penetration of the blood-brain barrier, and pharmacokinetics suitable for once-daily oral administration at low dose. Structure-activity relationship, biophysical, and structural studies led to prioritization of four compounds for in-depth safety and pharmacokinetic studies in animal models. One compound (AZD4831) progressed to clinical studies on grounds of high potency (IC50, 1.5 nM in vitro) and selectivity (>450-fold vs thyroid peroxidase in vitro), the mechanism of irreversible inhibition, and the safety profile. Following phase 1 studies in healthy volunteers and a phase 2a study in patients with HFpEF, a phase 2b/3 efficacy study of AZD4831 in patients with HFpEF started in 2021.


Subject(s)
Heart Failure , Animals , Heart Failure/drug therapy , Humans , Iodide Peroxidase/therapeutic use , Peroxidase , Pyrimidines , Pyrroles , Stroke Volume/physiology
4.
Bioorg Med Chem Lett ; 29(10): 1241-1245, 2019 05 15.
Article in English | MEDLINE | ID: mdl-30879840

ABSTRACT

Atrial fibrillation (AF) is a major cause of stroke, heart failure, sudden death and cardiovascular morbidity. The Kv1.5 potassium channel conducts the IKur current and has been demonstrated to be predominantly expressed in atrial versus ventricular tissue. Blockade of Kv1.5 has been proven to be an effective approach to restoring and maintaining sinus rhythm in preclinical models of AF. In the clinical setting, however, the therapeutic value of this approach remains an open question. Herein, we present synthesis and optimization of a novel series of 1,2-bis(aryl)ethane-1,2-diamines with selectivity for Kv1.5 over other potassium ion channels. The effective refractory period in the right atrium (RAERP) in a rabbit PD model was investigated for a selection of potent and selective compounds with balanced DMPK properties. The most advanced compound (10) showed nanomolar potency in blocking Kv1.5 in human atrial myocytes and based on the PD data, the estimated dose to man is 700 mg/day. As previously reported, 10 efficiently converted AF to sinus rhythm in a dog disease model.


Subject(s)
Anti-Arrhythmia Agents/chemistry , Atrial Fibrillation/drug therapy , Ethylenediamines/chemistry , Potassium Channel Blockers/chemistry , Animals , Anti-Arrhythmia Agents/pharmacology , CHO Cells , Cricetulus , Disease Models, Animal , Dogs , Drug Evaluation, Preclinical , Ethylenediamines/pharmacology , Heart Atria/drug effects , Humans , Kv1.5 Potassium Channel/metabolism , Molecular Structure , Myocytes, Cardiac/drug effects , Potassium Channel Blockers/pharmacology , Rabbits , Structure-Activity Relationship
5.
J Med Chem ; 62(3): 1385-1406, 2019 02 14.
Article in English | MEDLINE | ID: mdl-30596500

ABSTRACT

The mechanism-based risk for hyperkalemia has limited the use of mineralocorticoid receptor antagonists (MRAs) like eplerenone in cardio-renal diseases. Here, we describe the structure and property-driven lead generation and optimization, which resulted in identification of MR modulators ( S)-1 and ( S)-33. Both compounds were partial MRAs but still demonstrated equally efficacious organ protection as eplerenone after 4 weeks of treatment in uni-nephrectomized rats on high-salt diet and aldosterone infusion. Importantly, and in sharp contrast to eplerenone, this was achieved without substantial changes to the urine Na+/K+ ratio after acute treatment in rat, which predicts a reduced risk for hyperkalemia. This work led to selection of ( S)-1 (AZD9977) as the clinical candidate for treating MR-mediated cardio-renal diseases, including chronic kidney disease and heart failure. On the basis of our findings, we propose an empirical model for prediction of compounds with low risk of affecting the urinary Na+/K+ ratio in vivo.


Subject(s)
Homeostasis/drug effects , Mineralocorticoid Receptor Antagonists/pharmacology , Oxazines/pharmacology , Potassium/metabolism , Protective Agents/pharmacology , Sodium/metabolism , Animals , Heart/drug effects , Humans , Kidney/drug effects , Male , Mineralocorticoid Receptor Antagonists/chemical synthesis , Mineralocorticoid Receptor Antagonists/metabolism , Molecular Structure , Oxazines/chemical synthesis , Oxazines/metabolism , Potassium/urine , Protective Agents/chemical synthesis , Protective Agents/metabolism , Rats, Sprague-Dawley , Rats, Wistar , Receptors, Mineralocorticoid/metabolism , Renal Insufficiency, Chronic/drug therapy , Sodium/urine , Structure-Activity Relationship
6.
Bioorg Med Chem Lett ; 26(8): 2023-9, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26965854

ABSTRACT

A series of isoindolinone compounds have been developed showing good in vitro potency on the Kv1.5 ion channel. By modification of two side chains on the isoindolinone scaffold, metabolically stable compounds with good in vivo PK profile could be obtained leaving the core structure unsubstituted. In this way, low microsomal intrinsic clearance (CLint) could be achieved despite a relatively high logD. The compounds were synthesized using the Ugi reaction, in some cases followed by Suzuki and Diels-Alder reactions, giving a diverse set of compounds in a small number of reaction steps.


Subject(s)
Isoindoles/pharmacology , Kv1.5 Potassium Channel/antagonists & inhibitors , Potassium Channel Blockers/pharmacology , Animals , Dose-Response Relationship, Drug , Humans , Isoindoles/chemical synthesis , Isoindoles/chemistry , Mice , Models, Animal , Molecular Structure , Potassium Channel Blockers/chemical synthesis , Potassium Channel Blockers/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...