Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 15783, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982122

ABSTRACT

Peyer's patches (PPs), which contain an abundance of B and T cells, play a key role in inducing pivotal immune responses in the intestinal tract. PPs are defined as aggregated lymph follicles, which consist of multiple lymph follicles (LFs) that may interact with each other in a synergistic manner. LFs are thought to be spherical in shape; however, the characteristics of their structure are not fully understood. To elucidate changes in the structure of PPs as individuals grow, we generated serial 2D sections from entire PPs harvested from mice at 2, 4, and 10 weeks of age and performed a 3D analysis using a software, Amira. Although the number of LFs in PPs was not changed throughout the experiment, the volume and surface area of LFs increased significantly, indicating that LFs in PPs develop continuously by recruiting immune cells, even after weaning. In response to the dramatic changes in the intestinal environment after weaning, the development of germinal centers (GCs) in LFs was observed at 4 and 10 weeks (but not 2 weeks) of age. In addition, GCs gradually began to form away from the center of LFs and close to the muscle layer where export lymphatic vessels develop. Importantly, each LF was joined to the adjacent LF; this feature was observed even in preweaning nonactivated PPs. These results suggest that PPs may have a unique organization and structure that enhance immune functions, allowing cells in LFs to have free access to adjacent LFs and egress smoothly from PPs to the periphery upon stimulation after weaning.


Subject(s)
Peyer's Patches , Weaning , Animals , Peyer's Patches/immunology , Mice , Germinal Center/immunology , B-Lymphocytes/immunology , Intercellular Junctions
3.
J Biochem ; 140(2): 211-20, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16822814

ABSTRACT

Mast cells (MCs) play crucial roles in innate immunity to parasitic and bacterial infections as well as in hypersensitivity, such as the induction and exacerbation of allergy and autoimmune diseases. The regulatory mechanisms for MC development and effector functions are of great interest for developing novel therapeutic strategies against such disorders. Here we report the establishment of novel, immortalized MC lines from bone marrow (BM) cells of a temperature-sensitive mutant of SV40 large T antigen-transgenic mice (termed SVMCs). BM cells from tsSV40LT mice were cultured in the presence of interleukin (IL)-3 for 3 weeks, and then subjected to limiting dilution and single-cell cloning, yielding 27 independent MC clones, three of which were subjected to further analysis. On culture with nerve growth factor, stem cell factor and IL-3, these SVMC clones showed morphologic and biochemical changes from mucosal MC-like to connective-tissue MC-like phenotypes. These SVMC lines exhibited a significantly enhanced proliferation rate, and a higher responsiveness to the high affinity Fc receptor for IgE-mediated intracellular calcium mobilization and degranulation than those of BM-derived cultured MCs. These cell lines should facilitate studies on the mechanisms for the development, differentiation and effector functions of MCs in health and diseases.


Subject(s)
Antigens, Polyomavirus Transforming/genetics , Antigens, Polyomavirus Transforming/metabolism , Cell Degranulation/physiology , Cell Proliferation , Mast Cells/metabolism , Animals , Calcium/metabolism , Cell Degranulation/genetics , Cell Line , Clone Cells/physiology , Gene Expression Regulation , Mice , Mice, Transgenic , Peptide Hydrolases/metabolism , RNA, Messenger/metabolism , Temperature
4.
J Gastroenterol ; 39(12): 1210-4, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15622488

ABSTRACT

The gene responsible for Peutz-Jeghers syndrome (PJS), LKB1 (also called STK11) was mapped to chromosome 19p13.3 and was found to encode a putative serine/threonine protein kinase, LKB1. As only a limited number (approximately 100) of germline mutations of the gene have been reported, and because the protein function is still unclear, information about LKB1 mutations and their expression should be accumulated to understand the phenotype-genotype correlation of this disease. Here we report a patient with sporadic PJS with early-onset gastric cancer. We found a novel germline frameshift mutation (757-758insT) in the LKB1 gene and a marked reduction in LKB1 protein expression in the carcinoma cells, suggesting that the loss of LKB1 function may have led to the carcinogenesis of the gastric cancer.


Subject(s)
Frameshift Mutation , Germ-Line Mutation , Peutz-Jeghers Syndrome/genetics , Protein Serine-Threonine Kinases/genetics , Stomach Neoplasms/genetics , AMP-Activated Protein Kinase Kinases , Adolescent , Disease Progression , Female , Humans , Peutz-Jeghers Syndrome/complications , Stomach Neoplasms/complications , Stomach Neoplasms/pathology
5.
J Clin Invest ; 111(3): 323-32, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12569157

ABSTRACT

Deletions in the DAP12 gene in humans result in Nasu-Hakola disease, characterized by a combination of bone fractures and psychotic symptoms similar to schizophrenia, rapidly progressing to presenile dementia. However, it is not known why these disorders develop upon deficiency in DAP12, an immunoreceptor signal activator protein initially identified in the immune system. Here we show that DAP12-deficient (DAP12(-/-)) mice develop an increased bone mass (osteopetrosis) and a reduction of myelin (hypomyelinosis) accentuated in the thalamus. In vitro osteoclast induction from DAP12(-/-) bone marrow cells yielded immature cells with attenuated bone resorption activity. Moreover, immature oligodendrocytes were arrested in the vicinity of the thalamus, suggesting that the primary defects in DAP12(-/-) mice are the developmental arrest of osteoclasts and oligodendrocytes. In addition, the mutant mice also showed synaptic degeneration, impaired prepulse inhibition, which is commonly observed in several neuropsychiatric diseases in humans including schizophrenia, and aberrant electrophysiological profiles in the thalami. These results provide a molecular basis for a unique combination of skeletal and psychotic characteristics of Nasu-Hakola disease as well as for schizophrenia and presenile dementia.


Subject(s)
Myelin Sheath/metabolism , Osteopetrosis/genetics , Synapses/metabolism , Alleles , Animals , Bone Resorption/genetics , Cells, Cultured , Electrophysiology , Gene Targeting , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Mutant Strains , Models, Genetic , Mutation , Neurons/cytology , Osteoclasts/metabolism , Receptors, GABA/metabolism , Reflex, Startle , Reverse Transcriptase Polymerase Chain Reaction , Thalamus/pathology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...