Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Sci ; 13(11): 3147-3160, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35414872

ABSTRACT

The antibody-drug conjugate (ADC) is a well-validated modality for the cell-specific delivery of small molecules with impact expanding rapidly beyond their originally-intended purpose of treating cancer. However, antibody-mediated delivery (AMD) remains inefficient, limiting its applicability to targeting highly potent payloads to cells with high antigen expression. Maximizing the number of payloads delivered per antibody is one key way in which delivery efficiency can be improved, although this has been challenging to carry out; with few exceptions, increasing the drug-to-antibody ratio (DAR) above ∼4 typically destroys the biophysical properties and in vivo efficacy for ADCs. Herein, we describe the development of a novel bioconjugation platform combining cysteine-engineered (THIOMAB) antibodies and recombinant XTEN polypeptides for the unprecedented generation of homogeneous, stable "TXCs" with DAR of up to 18. Across three different bioactive payloads, we demonstrated improved AMD to tumors and Staphylococcus aureus bacteria for high-DAR TXCs relative to conventional low-DAR ADCs.

2.
mBio ; 12(3): e0020221, 2021 06 29.
Article in English | MEDLINE | ID: mdl-34061593

ABSTRACT

Pseudomonas aeruginosa causes life-threatening infections that are associated with antibiotic failure. Previously, we identified the antibiotic G2637, an analog of arylomycin, targeting bacterial type I signal peptidase, which has moderate potency against P. aeruginosa. We hypothesized that an antibody-antibiotic conjugate (AAC) could increase its activity by colocalizing P. aeruginosa bacteria with high local concentrations of G2637 antibiotic in the intracellular environment of phagocytes. Using a novel technology of screening for hybridomas recognizing intact bacteria, we identified monoclonal antibody 26F8, which binds to lipopolysaccharide O antigen on the surface of P. aeruginosa bacteria. This antibody was engineered to contain 6 cysteines and was conjugated to the G2637 antibiotic via a lysosomal cathepsin-cleavable linker, yielding a drug-to-antibody ratio of approximately 6. The resulting AAC delivered a high intracellular concentration of free G2637 upon phagocytosis of AAC-bound P. aeruginosa by macrophages, and potently cleared viable P. aeruginosa bacteria intracellularly. The molar concentration of AAC-associated G2637 antibiotic that resulted in elimination of bacteria inside macrophages was approximately 2 orders of magnitude lower than the concentration of free G2637 required to eliminate extracellular bacteria. This study demonstrates that an anti-P. aeruginosa AAC can locally concentrate antibiotic and kill P. aeruginosa inside phagocytes, providing additional therapeutic options for antibiotics that are moderately active or have an unfavorable pharmacokinetics or toxicity profile. IMPORTANCE Antibiotic treatment of life-threatening P. aeruginosa infections is associated with low clinical success, despite the availability of antibiotics that are active in standard microbiological in vitro assays, affirming the need for new therapeutic approaches. Antibiotics often fail in the preclinical stage due to insufficient efficacy against P. aeruginosa. One potential strategy is to enhance the local concentration of antibiotics with limited inherent anti-P. aeruginosa activity. This study presents proof of concept for an antibody-antibiotic conjugate, which releases a high local antibiotic concentration inside macrophages upon phagocytosis, resulting in potent intracellular killing of phagocytosed P. aeruginosa bacteria. This approach may provide new therapeutic options for antibiotics that are dose limited.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antibodies, Monoclonal/pharmacology , Macrophages/drug effects , Macrophages/immunology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/immunology , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/immunology , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/metabolism , Drug Delivery Systems/methods , Humans , Macrophages/microbiology , Mice , Microbial Viability/drug effects , Phagocytosis/drug effects , Proof of Concept Study , Pseudomonas Infections/drug therapy , Pseudomonas Infections/immunology , Pseudomonas aeruginosa/metabolism , RAW 264.7 Cells , Rats
3.
mBio ; 7(5)2016 09 06.
Article in English | MEDLINE | ID: mdl-27601569

ABSTRACT

UNLABELLED: The type I signal peptidase of Staphylococcus aureus, SpsB, is an attractive antibacterial target because it is essential for viability and extracellularly accessible. We synthesized compound 103, a novel arylomycin-derived inhibitor of SpsB with significant potency against various clinical S. aureus strains (MIC of ~1 µg/ml). The predominant clinical strain USA300 developed spontaneous resistance to compound 103 with high frequency, resulting from single point mutations inside or immediately upstream of cro/cI, a homolog of the lambda phage transcriptional repressor cro These cro/cI mutations led to marked (>50-fold) overexpression of three genes encoding a putative ABC transporter. Overexpression of this ABC transporter was both necessary and sufficient for resistance and, notably, circumvented the essentiality of SpsB during in vitro culture. Mutation of its predicted ATPase gene abolished resistance, suggesting a possible role for active transport; in these bacteria, resistance to compound 103 occurred with low frequency and through mutations in spsB Bacteria overexpressing the ABC transporter and lacking SpsB were capable of secreting a subset of proteins that are normally cleaved by SpsB and instead were cleaved at a site distinct from the canonical signal peptide. These bacteria secreted reduced levels of virulence-associated proteins and were unable to establish infection in mice. This study reveals the mechanism of resistance to a novel arylomycin derivative and demonstrates that the nominal essentiality of the S. aureus signal peptidase can be circumvented by the upregulation of a putative ABC transporter in vitro but not in vivo IMPORTANCE: The type I signal peptidase of Staphylococcus aureus (SpsB) enables the secretion of numerous proteins by cleavage of the signal peptide. We synthesized an SpsB inhibitor with potent activity against various clinical S. aureus strains. The predominant S. aureus strain USA300 develops resistance to this inhibitor by mutations in a novel transcriptional repressor (cro/cI), causing overexpression of a putative ABC transporter. This mechanism promotes the cleavage and secretion of various proteins independently of SpsB and compensates for the requirement of SpsB for viability in vitro However, bacteria overexpressing the ABC transporter and lacking SpsB secrete reduced levels of virulence-associated proteins and are unable to infect mice. This study describes a bacterial resistance mechanism that provides novel insights into the biology of bacterial secretion.


Subject(s)
ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Staphylococcus aureus/enzymology , Staphylococcus aureus/genetics , Animals , Anti-Bacterial Agents/pharmacology , Disease Models, Animal , Drug Resistance, Bacterial , Gene Expression , Membrane Proteins/antagonists & inhibitors , Mice , Microbial Sensitivity Tests , Mutation , Selection, Genetic , Staphylococcal Infections/microbiology , Staphylococcus aureus/drug effects , Staphylococcus aureus/metabolism , Virulence
4.
Nature ; 527(7578): 323-8, 2015 Nov 19.
Article in English | MEDLINE | ID: mdl-26536114

ABSTRACT

Staphylococcus aureus is considered to be an extracellular pathogen. However, survival of S. aureus within host cells may provide a reservoir relatively protected from antibiotics, thus enabling long-term colonization of the host and explaining clinical failures and relapses after antibiotic therapy. Here we confirm that intracellular reservoirs of S. aureus in mice comprise a virulent subset of bacteria that can establish infection even in the presence of vancomycin, and we introduce a novel therapeutic that effectively kills intracellular S. aureus. This antibody-antibiotic conjugate consists of an anti-S. aureus antibody conjugated to a highly efficacious antibiotic that is activated only after it is released in the proteolytic environment of the phagolysosome. The antibody-antibiotic conjugate is superior to vancomycin for treatment of bacteraemia and provides direct evidence that intracellular S. aureus represents an important component of invasive infections.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteremia , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , Intracellular Space/microbiology , Staphylococcal Infections/microbiology , Staphylococcus aureus/drug effects , Vancomycin/pharmacology , Animals , Anti-Bacterial Agents/therapeutic use , Bacteremia/drug therapy , Bacteremia/microbiology , Carrier State/drug therapy , Carrier State/microbiology , Drug Design , Female , Immunoconjugates/chemistry , Intracellular Space/drug effects , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Mice , Microbial Sensitivity Tests , Phagosomes/drug effects , Phagosomes/metabolism , Phagosomes/microbiology , Staphylococcal Infections/drug therapy , Staphylococcal Infections/pathology , Staphylococcus aureus/pathogenicity , Vancomycin/therapeutic use
5.
PLoS Pathog ; 9(10): e1003653, 2013.
Article in English | MEDLINE | ID: mdl-24130480

ABSTRACT

Infection of host tissues by Staphylococcus aureus and S. epidermidis requires an unusual family of staphylococcal adhesive proteins that contain long stretches of serine-aspartate dipeptide-repeats (SDR). The prototype member of this family is clumping factor A (ClfA), a key virulence factor that mediates adhesion to host tissues by binding to extracellular matrix proteins such as fibrinogen. However, the biological siginificance of the SDR-domain and its implication for pathogenesis remain poorly understood. Here, we identified two novel bacterial glycosyltransferases, SdgA and SdgB, which modify all SDR-proteins in these two bacterial species. Genetic and biochemical data demonstrated that these two glycosyltransferases directly bind and covalently link N-acetylglucosamine (GlcNAc) moieties to the SDR-domain in a step-wise manner, with SdgB appending the sugar residues proximal to the target Ser-Asp repeats, followed by additional modification by SdgA. GlcNAc-modification of SDR-proteins by SdgB creates an immunodominant epitope for highly opsonic human antibodies, which represent up to 1% of total human IgG. Deletion of these glycosyltransferases renders SDR-proteins vulnerable to proteolysis by human neutrophil-derived cathepsin G. Thus, SdgA and SdgB glycosylate staphylococcal SDR-proteins, which protects them against host proteolytic activity, and yet generates major eptopes for the human anti-staphylococcal antibody response, which may represent an ongoing competition between host and pathogen.


Subject(s)
Bacterial Proteins/immunology , Glycosyltransferases/immunology , Host-Pathogen Interactions/immunology , Methicillin-Resistant Staphylococcus aureus/physiology , Staphylococcal Infections/immunology , Staphylococcus epidermidis/physiology , Virulence Factors/immunology , Animals , Antibodies, Bacterial/genetics , Antibodies, Bacterial/immunology , Bacterial Adhesion/genetics , Bacterial Adhesion/immunology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cathepsin G/genetics , Cathepsin G/immunology , Cathepsin G/metabolism , Cell Line, Tumor , Cell Wall/enzymology , Cell Wall/genetics , Cell Wall/immunology , Epitopes/genetics , Epitopes/immunology , Epitopes/metabolism , Female , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Host-Pathogen Interactions/genetics , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Male , Mice , Repetitive Sequences, Amino Acid , Staphylococcal Infections/enzymology , Staphylococcal Infections/genetics , Virulence Factors/genetics , Virulence Factors/metabolism
6.
EMBO Rep ; 10(2): 173-9, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19148225

ABSTRACT

Ubiquilins (UBQLNs) are adaptor proteins thought to deliver ubiquitinated substrates to proteasomes. Here, we show a role for UBQLN in autophagy: enforced expression of UBQLN protects cells from starvation-induced death, whereas depletion of UBQLN renders cells more susceptible. The UBQLN protective effect requires the autophagy-related genes ATG5 and ATG7, two essential components of autophagy. The ubiquitin-associated domain of UBQLN mediates both its association with autophagosomes and its protective effect against starvation. Depletion of UBQLN delays the delivery of autophagosomes to lysosomes. This study identifies a new role for UBQLN in regulating the maturation of autophagy, expanding the involvement of ubiquitin-related proteins in this process.


Subject(s)
Autophagy/physiology , Carrier Proteins/physiology , Cell Cycle Proteins/physiology , Ubiquitins/physiology , Adaptor Proteins, Signal Transducing , Adaptor Proteins, Vesicular Transport/antagonists & inhibitors , Adaptor Proteins, Vesicular Transport/genetics , Adaptor Proteins, Vesicular Transport/physiology , Animals , Autophagy/drug effects , Autophagy-Related Protein 5 , Autophagy-Related Protein 7 , Autophagy-Related Proteins , Carrier Proteins/antagonists & inhibitors , Carrier Proteins/genetics , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/genetics , Culture Media/pharmacology , HeLa Cells/cytology , HeLa Cells/drug effects , Humans , Mice , Microscopy, Immunoelectron , Microtubule-Associated Proteins/antagonists & inhibitors , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/physiology , Phagosomes/metabolism , Protein Interaction Mapping , Protein Structure, Tertiary , RNA Interference , RNA, Small Interfering/physiology , Recombinant Fusion Proteins/antagonists & inhibitors , Recombinant Fusion Proteins/physiology , Ubiquitin-Activating Enzymes/antagonists & inhibitors , Ubiquitin-Activating Enzymes/genetics , Ubiquitin-Activating Enzymes/physiology , Ubiquitins/antagonists & inhibitors , Ubiquitins/genetics
7.
Mol Biol Cell ; 19(3): 1252-60, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18199683

ABSTRACT

The activity of many signaling receptors is regulated by their endocytosis via clathrin-coated pits (CCPs). For G protein-coupled receptors (GPCRs), recruitment of the adaptor protein arrestin to activated receptors is thought to be sufficient to drive GPCR clustering in CCPs and subsequent endocytosis. We have identified an unprecedented role for the ubiquitin-like protein PLIC-2 as a negative regulator of GPCR endocytosis. Protein Linking IAP to Cytoskeleton (PLIC)-2 overexpression delayed ligand-induced endocytosis of two GPCRs: the V2 vasopressin receptor and beta-2 adrenergic receptor, without affecting endocytosis of the transferrin or epidermal growth factor receptor. The closely related isoform PLIC-1 did not affect receptor endocytosis. PLIC-2 specifically inhibited GPCR concentration in CCPs, without affecting membrane recruitment of arrestin-3 to activated receptors or its cellular levels. Depletion of cellular PLIC-2 accelerated GPCR endocytosis, confirming its regulatory function at endogenous levels. The ubiquitin-like domain of PLIC-2, a ligand for ubiquitin-interacting motifs (UIMs), was required for endocytic inhibition. Interestingly, the UIM-containing endocytic adaptors epidermal growth factor receptor protein substrate 15 and Epsin exhibited preferential binding to PLIC-2 over PLIC-1. This differential interaction may underlie PLIC-2 specific effect on GPCR endocytosis. Identification of a negative regulator of GPCR clustering reveals a new function of ubiquitin-like proteins and highlights a cellular requirement for exquisite regulation of receptor dynamics.


Subject(s)
Cell Cycle Proteins/metabolism , Endocytosis , Receptors, Adrenergic, beta-2/metabolism , Receptors, Vasopressin/metabolism , Ubiquitins/metabolism , Adaptor Proteins, Signal Transducing , Adaptor Proteins, Vesicular Transport/metabolism , Amino Acid Motifs , Arrestins/metabolism , Autophagy-Related Proteins , Calcium-Binding Proteins/metabolism , Carrier Proteins/metabolism , Cell Cycle Proteins/chemistry , Cell Line , Cell Membrane/metabolism , Clathrin-Coated Vesicles/metabolism , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Phosphoproteins/metabolism , Protein Binding , Protein Structure, Tertiary , Protein Transport , Ubiquitins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...