Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Orthop J Sports Med ; 10(7): 23259671221107931, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35837443

ABSTRACT

Background: A steeper posterior tibial slope (PTS) is an important risk factor for anterior cruciate ligament (ACL) reinjury. The PTS may affect lower extremity biomechanics under competition-like conditions for athletes with a reconstructed ACL. Hypothesis: It was hypothesized that the PTS would be associated with lower extremity biomechanics, which may increase ACL strain. Study Design: Descriptive laboratory study. Methods: Included were 10 athletes (mean age, 20.9 ± 1.8 years) who had undergone ACL reconstruction. The authors recorded the 3-dimensional lower extremity biomechanics while participants performed a single-leg drop jump with the Stroop task (dual task). Kinematic and kinetic data were analyzed and compared between the involved and contralateral limbs. The medial and lateral PTSs were measured using magnetic resonance imaging scans of the involved knee. The correlation between the biomechanical data and the PTS in each knee was evaluated. Results: The lateral PTS was significantly correlated with the maximum hip adduction moment (r = 0.64; P < .05) and maximum internal tibial rotation angle (r = 0.71; P < .05) in the involved limb. There were no differences in kinematic and kinetic data between the involved and contralateral limbs. Conclusion: In athletes after ACL reconstruction, the lateral PTS was directly associated with the maximum internal tibial rotation angle during single-leg drop landing with a cognitive task. Clinical Relevance: The findings in this study indicate that a steeper lateral PTS may cause internal rotation of the tibia during landing, which may be associated with reinjury in athletes with a reconstructed ACL.

2.
Arthroplast Today ; 6(3): 338-342, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32529016

ABSTRACT

BACKGROUND: To provide normal knee function, a total knee arthroplasty (TKA) implant with an anatomic surface shape and an adequate sagittal position has been developed. However, it is unclear how this modern implant influences knee joint kinetics and muscle activation during a gait. Therefore, we evaluated this modern TKA prosthesis and compared it with a conventional TKA prosthesis for gait analysis in terms of kinetics and muscle activation. METHODS: Subjects were patients (>60 years of age) with knee osteoarthritis who had undergone unilateral TKA. Twelve patients received the modern TKA prosthesis (group modern), and the other 12 patients received a conventional TKA prosthesis (group conventional). The subjects underwent motion capture analyses with a force plate, and kinematic and kinetic data were acquired from a 10-m gait test. Electromyography data of 6 lower limb muscles were simultaneously collected during the gait test. The 2 groups were compared using unpaired t-tests. RESULTS: In group modern, gait speed was faster, step length was longer, and the knee flexion angle during the initial stance phase was larger. Furthermore, in group modern, the maximum knee extension moment was higher; however, the quadriceps muscle activity tended to be lower than that in group conventional. CONCLUSIONS: Gait characteristics of group modern were more like a normal gait, and knee joint extension moments were greater. This finding indicates that the quadriceps muscles can be more effectively activated, and the anterior stability function of the anterior cruciate ligament may be reproduced with the shape of the modern implant.

SELECTION OF CITATIONS
SEARCH DETAIL
...