Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Anim ; 66(4): 437-445, 2017 Oct 30.
Article in English | MEDLINE | ID: mdl-28717054

ABSTRACT

The in vivo imaging of mice makes it possible to analyze disease progress non-invasively through reporter gene expression. As the removal of hair improves the accuracy of in vivo imaging, gene-modified mice with a reporter gene are often crossed with Hos:HR-1 mutant mice homozygous for the spontaneous Hrhr mutation that exhibit a hair loss phenotype. However, it is time consuming to produce mice carrying both the reporter gene and mutant Hrhr gene by mating. In addition, there is a risk that genetic background of the gene-modified mice would be altered by mating. To resolve these issues, we established a simple method to generate hairless mice maintaining the original genetic background by CRISPR technology. First, we constructed the pX330 vector, which targets exon 3 of Hr. This DNA vector (5 ng/µl) was microinjected into the pronuclei of C57BL/6J mice. Induced Hr gene mutations were found in many founders (76.1%) and these mutations were heritable. Next, we performed in vivo imaging using these gene-modified hairless mice. As expected, luminescent objects in their body were detected by in vivo imaging. This study clearly showed that hairless mice could be simply generated by the CRISPR/Cas9 system, and this method may be useful for in vivo imaging studies with various gene-modified mice.


Subject(s)
CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats , Diagnostic Imaging/methods , Mice, Hairless/genetics , Mitochondrial Replacement Therapy/methods , Mutation , Transcription Factors/genetics , Animals , Animals, Genetically Modified , DNA/genetics , Genes, Reporter/genetics , Genetic Vectors , Mice, Inbred C57BL , Microinjections , Phenotype
2.
Exp Anim ; 63(2): 183-91, 2014.
Article in English | MEDLINE | ID: mdl-24770644

ABSTRACT

Cre/loxP system-mediated site-specific recombination is utilized to study gene function in vivo. Successful conditional knockout of genes of interest is dependent on the availability of Cre-driver mice. We produced and characterized pancreatic ß cell-specific Cre-driver mice for use in diabetes mellitus research. The gene encoding Cre was inserted into the second exon of mouse Ins1 in a bacterial artificial chromosome (BAC). Five founder mice were produced by microinjection of linearized BAC Ins1-cre. The transgene was integrated between Mafa and the telomere on chromosome 15 in one of the founders, BAC Ins1-cre25. To investigate Cre-loxP recombination, BAC Ins1-cre25 males were crossed with two different Cre-reporters, R26R and R26GRR females. On gross observation, reporter signal after Cre-loxP recombination was detected exclusively in the adult pancreatic islets in both F1 mice. Immunohistological analysis indicated that Cre-loxP recombination-mediated reporter signal was colocalized with insulin in pancreatic islet cells of both F1 mice, but not with glucagon. Moreover, Cre-loxP recombination signal was already observed in the pancreatic islets at E13.5 in both F1 fetuses. Finally, we investigated ectopic Cre-loxP recombination for Ins1, because the ortholog Ins2 is also expressed in the brain, in addition to the pancreas. However, there was no Cre-loxP recombination-mediated reporter signal in the brain of both F1 mice. Our data suggest that BAC Ins1-cre25 mice are a useful Cre-driver C57BL/6N for pancreatic ß cell-specific Cre-loxP recombination, except for crossing with knock-in mice carrying floxed gene on chromosome 15.


Subject(s)
Extracellular Matrix Proteins/genetics , Insulin-Secreting Cells , Insulin/genetics , Integrases/genetics , Mice, Transgenic/genetics , Protein-Lysine 6-Oxidase/genetics , Recombination, Genetic/genetics , Animals , Chromosomes, Artificial, Bacterial/genetics , Diabetes Mellitus/genetics , Female , Male , Mice , Mice, Inbred C57BL
3.
Exp Anim ; 62(4): 295-304, 2013.
Article in English | MEDLINE | ID: mdl-24172193

ABSTRACT

The Cre/loxP system is a strategy for controlling temporal and/or spatial gene expression through genome alteration in mice. As successful Cre/loxP genome alteration depends on Cre-driver mice, Cre-reporter mice are essential for validation of Cre gene expression in vivo. In most Cre-reporter mouse strains, although the presence of reporter product indicates the expression of Cre recombinase, it has remained unclear whether a lack of reporter signal indicates either no Cre recombinase expression or insufficient reporter gene promoter activity. We produced a novel ROSA26 knock-in Cre-reporter C57BL/6N strain exhibiting green emission before and red after Cre-mediated recombination, designated as strain R26GRR. Ubiquitous green fluorescence and no red fluorescence were observed in R26GRR mice. To investigate the activation of tdsRed, EGFP-excised R26GRR, R26RR, mice were produced through the crossing of C57BL/6N mice with R26GRR/Ayu1-Cre F1 mice. R26RR mice showed extraordinarily strong red fluorescence in almost all tissues examined, suggesting ubiquitous activation of the second reporter in all tissues after Cre/loxP recombination. Moreover, endothelial cell lineage and pancreatic islet-specific expression of red fluorescence were detected in R26GRR/Tie2-Cre F1 mice and R26GRR /Ins1-Cre F1 mice, respectively. These results indicated that R26GRR mice are a useful novel Cre-reporter mouse strain. In addition, R26GRR mice with a pure C57BL/6N background represent a valuable source of green-to-red photoconvertible cells following Cre/loxP recombination for application in transplantation studies. The R26GRR mouse strain will be available from RIKEN BioResource Center (http://www.brc.riken.jp/lab/animal/en/).


Subject(s)
Gene Expression , Genes, Reporter/genetics , Genes, Reporter/physiology , Green Fluorescent Proteins/metabolism , Integrases/genetics , Integrases/metabolism , Animals , Cells, Cultured , Embryonic Stem Cells , Endothelial Cells/metabolism , Female , Gene Knock-In Techniques , Islets of Langerhans/metabolism , Luminescent Proteins , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Recombination, Genetic , Ubiquitination , Red Fluorescent Protein
4.
Exp Anim ; 60(2): 161-7, 2011.
Article in English | MEDLINE | ID: mdl-21512271

ABSTRACT

We found 6 spontaneous mutant mice with long pelage hair in our ICR breeding colony. The abnormal trait was restricted to long hair in these mice, which we named moja. They were fertile and showed the same growth and behavior as wild-type mice. To investigate the manner of the genetic inheritance of the moja allele, offspring were bred by mating the moja mice; all offspring had long pelage hair. Furthermore, we performed a reciprocal cross between moja mice and wild-type ICR mice with normal hair. All offspring exhibited normal hair suggesting an autosomal recessive inheritance of the trait. The moja/moja hair phenotype was maintained in skin grafted onto nude mice, suggesting that circulating or diffusible humoral factors regulating the hair cycle are not involved in the abnormal trait. The phenotype of moja/moja mice is similar to that of Fgf5-deficient mice. Therefore, we examined the expression of Fgf5 by RT-PCR in moja/moja mice. As expected, no Fgf5 expression was found in moja/moja mouse skin. PCR and DNA sequence analyses were performed to investigate the structure of the Fgf5 gene. We found a deletion of a 9.3-kb region in the Fgf5 gene including exon 3 and its 5' and 3' flanking sequences. Interestingly, the genomic deletion site showed insertion of a 498-bp early transposon element long terminal repeat. Taken together, these results suggest that the long hair mutation of moja/moja mice is caused by disruption of Fgf5 mediated by insertion of a retrotransposon.


Subject(s)
Fibroblast Growth Factor 5/genetics , Hair/growth & development , Mice/genetics , Retroelements , Animals , Base Sequence , Crosses, Genetic , Female , Gene Deletion , Hair/physiology , Male , Mice, Inbred ICR , Mice, Inbred Strains , Mice, Nude , Molecular Sequence Data , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...