Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Mech Methods ; 30(3): 189-196, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31736396

ABSTRACT

Predicting drug-induced liver injury is important in early stage drug discovery; however, an accurate prediction with existing hepatotoxicity evaluation tools is difficult. Conventional monolayer (2D) cultures have short viabilities and are therefore inappropriate for performing long-term toxicity tests. Conventionally used 200-µm spheroids also have toxicity detection limits. The goal of this study was to develop a humanized liver tissue capable of evaluating long-term toxicity with high sensitivity. Spheroids consisting of co-cultured cryopreserved primary human hepatocytes and human hepatic stellate cells were developed using a 3D bio-printer. The "3D bio-printed liver tissue", of ∼1 mm, was then used for long-term viability assessments (over 25 days) based on ATP, albumin, and urea levels. Hepatotoxicity evaluation was performed by analyzing the expression of genes involved in drug metabolism and transport over a 2-week drug exposure period. The 3D bio-printed liver tissue showed improved viability and enhanced gene expression of enzymes related to drug metabolism and transport, as compared to the controls. Additionally, the 3D bio-printed liver tissue demonstrated a high sensitivity for hepatotoxicity evaluation when combined with pathological evaluation and measurements for ATP production, and secretion of albumin and urea. In conclusion, the 3D bio-printed liver tissue was able to detect the toxicity of compounds that was, otherwise, undetected by 2D culture and conventionally used spheroids. These findings demonstrate a 3D bio-printed liver tissue with increased accuracy of hepatotoxicity prediction in the early stages of drug discovery, as compared to currently available methods.


Subject(s)
Bioprinting , Chemical and Drug Induced Liver Injury , Toxicity Tests/methods , Adenosine Triphosphate/biosynthesis , Coculture Techniques , Cytochrome P-450 CYP3A/metabolism , Hepatic Stellate Cells/drug effects , Hepatocytes/drug effects , Humans , Spheroids, Cellular
SELECTION OF CITATIONS
SEARCH DETAIL
...