Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 23(13): 7269-75, 2007 Jun 19.
Article in English | MEDLINE | ID: mdl-17503863

ABSTRACT

The effect of chain-end chemistry on surface and interfacial segregation in symmetric blends of polystyrene (hPS)/deuterated polystyrene (dPS) has been investigated by X-ray photoelectron and secondary ion mass spectroscopy in conjunction with neutron reflectivity measurements. Alpha,omega-fluoroalkyl- and alpha,omega-carboxy-terminated polystyrenes (alpha,omega-hPS(Rf)2 and alpha,omega-hPS(COOH)2) were used as end-functionalized polymers; the former possesses chain ends with lower surface energies, and the latter possesses higher surface energies compared with that of the main chain. In the case of an alpha,omega-hPS(Rf)2/dPS blend film, alpha,omega-hPS(Rf)2 was enriched at the surface owing to the surface localization of the Rf groups, although the surface energy of the hPS segments was slightly higher than that of the dPS ones. On the contrary, in the case of an alpha,omega-hPS(COOH)2/dPS blend film, dPS was preferentially segregated at the surface. This may be due to a surface depletion of COOH ends and an apparent molecular weight increase of alpha,omega-hPS(COOH)2 produced by a hydrogen-bonded intermolecular association of COOH ends in addition to the surface energy difference between hPS and dPS segments. Interestingly, both Rf and COOH chain ends were partitioned to the substrate interface for the alpha,omega-hPS(Rf)2/dPS and alpha,omega-hPS(COOH)2/dPS blend films, resulting in the segregation of the hPS component at the substrate interface for both blends. The results presented imply that surface and interfacial segregation in polymer blends could be regulated by incorporating functional groups into the end portions of one component.

2.
Langmuir ; 21(16): 7299-302, 2005 Aug 02.
Article in English | MEDLINE | ID: mdl-16042457

ABSTRACT

A simple and easy method to prepare super-liquid-repellent surfaces is proposed. Sol-gel films were prepared by hydrolysis and condensation of alkoxysilane compounds. Both surface energy and roughness were controlled using colloidal silica particles and fluoroalkylsilane. When the fractional amounts of both colloidal silica and fluoroalkylsilane were optimized in the films, the film surface exhibited repellency to both water and oil. Finally, it was shown that the method proposed here would be applied to a simple one-pot coating for a uniform large area, and be useful for practical use.

3.
Adv Colloid Interface Sci ; 111(3): 159-79, 2004 Dec 13.
Article in English | MEDLINE | ID: mdl-15589807

ABSTRACT

Surface structure and dynamics in three different polymeric ultrathin systems, such as organosilane monolayers, poly(methyl methacrylate) (PMMA) brushes and poly(amido amine) dendrimer monolayers are discussed.


Subject(s)
Air , Polymers/chemistry , Water/chemistry , Molecular Structure , Organosilicon Compounds/chemistry , Silanes , Surface Properties , Temperature
4.
Langmuir ; 20(13): 5304-10, 2004 Jun 22.
Article in English | MEDLINE | ID: mdl-15986667

ABSTRACT

Well-defined poly(styrene-block-2-perfluorooctyl ethyl acrylate) [P(St-b-PFA)] copolymers with various chemical compositions were synthesized by atom transfer radical polymerization. Films of P(St-b-PFA) were structurally characterized, from bulk to surface, on the basis of transmittance electron microscopic observation and small-angle X-ray scattering, X-ray photoelectron spectroscopic, and contact angle measurements. For a comparison, poly(styrene-random-2-perfluorooctyl ethyl acrylate) [P(St-ran-PFA)] copolymers were also synthesized by conventional free radical polymerization. While P(St-b-PFA) with the 2-perfluorooctyl ethyl acrylate (PFA) content higher than 18.7 mol % formed a typical phase-separated cylinder structure, P(St-b-PFA) with a lower PFA content and P(St-ran-PFA) were in a miscible state. Since the perfluoroalkyl groups possess extremely low surface energy, they were preferentially segregated at the film surface, resulting in the formation of the PFA surface layer. This was the case for all P(St-b-PFA) films examined, although the aggregation state at the surface was strongly dependent on the PFA content. In the case of the P(St-b-PFA) with the PFA content higher than 18.7 mol %, both advancing and receding contact angles for water were 120 degrees and even larger with almost no hysteresis. In addition, extremely excellent oil-repellent surface properties such as advancing and receding contact angles for dodecane of 76 degrees and 75 degrees were also observed. However, these intriguing liquid-repellent properties were not observed for the films of miscible P(St-b-PFA) and P(St-ran-PFA). Therefore, it can be concluded that the internal structure beneath the surface as well as the surface itself should be deeply considered to design excellent and stable liquid-repellent materials.

5.
Ultramicroscopy ; 91(1-4): 203-13, 2002 May.
Article in English | MEDLINE | ID: mdl-12211469

ABSTRACT

Nanotribological behaviors of organosilane monolayers prepared by the Langmuir-Blodgett (LB) and chemisorption methods are discussed in terms of their aggregation states. Aggregation structure of the LB n-octadecyltrichlorosilane (OTS-C18) monolayers changed from a rectangular to an amorphous phase via a hexagonal phase with increasing temperature. A distinct lateral force decrease accompanies the phase transition. The LB alkyltrichlorosilane monolayers with longer alkyl chains were in a crystalline state at 293 K. The lateral force of the LB alkyltrichlorosilane monolayers at 293 K increased with increasing chain length. The n-triacontyltrichlorosilane LB monolayer (TATS-C30) in a rectangular phase showed higher lateral force than that of the alkyltrichlorosilane with shorter alkyl chains in a hexagonal phase. The lateral force of the OTS-C18 monolayer prepared by the LB method was higher than that of the chemisorbed one because of the higher packing density of alkyl chain for the LB monolayer, though both monolayers are in a hexagonal phase at 293 K. A large increase in lateral force was observed for the 18-nonadecenyltrichlorosilane (NTS) after oxidation of vinyl end groups.

6.
Nat Mater ; 1(1): 64-8, 2002 Sep.
Article in English | MEDLINE | ID: mdl-12618852

ABSTRACT

Blue phases are types of liquid crystal phases that appear in a temperature range between a chiral nematic phase and an isotropic liquid phase. Because blue phases have a three-dimensional cubic structure with lattice periods of several hundred nanometres, they exhibit selective Bragg reflections in the range of visible light corresponding to the cubic lattice. From the viewpoint of applications, although blue phases are of interest for fast light modulators or tunable photonic crystals, the very narrow temperature range, usually less than a few kelvin, within which blue phases exist has always been a problem. Here we show the stabilization of blue phases over a temperature range of more than 60 K including room temperature (260-326 K). Furthermore, we demonstrate an electro-optical switching with a response time of the order of 10(-4) s for the stabilized blue phases at room temperature.

SELECTION OF CITATIONS
SEARCH DETAIL
...