Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 95(13): 7305-9, 1998 Jun 23.
Article in English | MEDLINE | ID: mdl-9636144

ABSTRACT

A previously unknown chemical structure, 6-desmethyl-6-ethylerythromycin A (6-ethylErA), was produced through directed genetic manipulation of the erythromycin (Er)-producing organism Saccharopolyspora erythraea. In an attempt to replace the methyl side chain at the C-6 position of the Er polyketide backbone with an ethyl moiety, the methylmalonate-specific acyltransferase (AT) domain of the Er polyketide synthase was replaced with an ethylmalonate-specific AT domain from the polyketide synthase involved in the synthesis of the 16-member macrolide niddamycin. The genetically altered strain was found to produce ErA, however, and not the ethyl-substituted derivative. When the strain was provided with precursors of ethylmalonate, a small quantity of a macrolide with the mass of 6-ethylErA was produced in addition to ErA. Because substrate for the heterologous AT seemed to be limiting, crotonyl-CoA reductase, a primary metabolic enzyme involved in butyryl-CoA production in streptomycetes, was expressed in the strain. The primary macrolide produced by the reengineered strain was 6-ethylErA.


Subject(s)
Erythromycin/analogs & derivatives , Macrolides , Acyl Coenzyme A/metabolism , Amino Acid Sequence , Anti-Bacterial Agents/chemistry , Erythromycin/pharmacology , Microbial Sensitivity Tests , Models, Chemical , Molecular Sequence Data , Plasmids , Protein Engineering , Restriction Mapping , Saccharopolyspora/genetics , Saccharopolyspora/metabolism , Structure-Activity Relationship
2.
J Bacteriol ; 179(23): 7515-22, 1997 Dec.
Article in English | MEDLINE | ID: mdl-9393718

ABSTRACT

The genes encoding the polyketide synthase (PKS) portion of the niddamycin biosynthetic pathway were isolated from a library of Streptomyces caelestis NRRL-2821 chromosomal DNA. Analysis of 40 kb of DNA revealed the presence of five large open reading frames (ORFs) encoding the seven modular sets of enzymatic activities required for the synthesis of a 16-membered lactone ring. The enzymatic motifs identified within each module were consistent with those predicted from the structure of niddamycin. Disruption of the second ORF of the PKS coding region eliminated niddamycin production, demonstrating that the cloned genes are involved in the biosynthesis of this compound.


Subject(s)
Anti-Bacterial Agents/biosynthesis , Genes, Bacterial , Multienzyme Complexes/genetics , Streptomyces/genetics , Amino Acid Sequence , Bacterial Proteins/genetics , Cloning, Molecular , DNA, Bacterial , Macrolides/metabolism , Molecular Sequence Data , Multigene Family , Mutagenesis , Open Reading Frames , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Streptomyces/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...