Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 548, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38177236

ABSTRACT

In this work we study in-depth the antireflection and filtering properties of ultrathin-metal-film-based transparent electrodes (MTEs) integrated in thin-film solar cells. Based on numerical optimization of the MTE design and the experimental characterization of thin-film perovskite solar cell (PSC) samples, we show that reflection in the visible spectrum can be strongly suppressed, in contrast to common belief (due to the compact metal layer). The optical loss of the optimized electrode (~ 2.9%), composed of a low-resistivity metal and an insulator, is significantly lower than that of a conventional transparent conductive oxide (TCO ~ 6.3%), thanks to the very high transmission of visible light within the cell (> 91%) and low thickness (< 70 nm), whereas the reflection of infrared light (~ 70%) improves by > 370%. To assess the application potentials, integrated current density > 25 mA/cm2, power conversion efficiency > 20%, combined with vastly reduced device heat load by 177.1 W/m2 was achieved in state-of-the-art PSCs. Our study aims to set the basis for a novel interpretation of composite electrodes/structures, such as TCO-metal-TCO, dielectric-metal-dielectric or insulator-metal-insulator, and hyperbolic metamaterials, in high-efficiency optoelectronic devices, such as solar cells, semi-transparent, and concentrated systems, and other electro-optical components including smart windows, light-emitting diodes, and displays.

2.
Adv Sci (Weinh) ; 7(22): 2002098, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33240765

ABSTRACT

Metal halide perovskites (MHPs) have emerged as a frontrunner semiconductor technology for application in third generation photovoltaics while simultaneously making significant strides in other areas of optoelectronics. Photodetectors are one of the latest additions in an expanding list of applications of this fascinating family of materials. The extensive range of possible inorganic and hybrid perovskites coupled with their processing versatility and ability to convert external stimuli into easily measurable optical/electrical signals makes them an auspicious sensing element even for the high-energy domain of the electromagnetic spectrum. Key to this is the ability of MHPs to accommodate heavy elements while being able to form large, high-quality crystals and polycrystalline layers, making them one of the most promising emerging X-ray and γ-ray detector technologies. Here, the fundamental principles of high-energy radiation detection are reviewed with emphasis on recent progress in the emerging and fascinating field of metal halide perovskite-based X-ray and γ-ray detectors. The review starts with a discussion of the basic principles of high-energy radiation detection with focus on key performance metrics followed by a comprehensive summary of the recent progress in the field of perovskite-based detectors. The article concludes with a discussion of the remaining challenges and future perspectives.

3.
Opt Express ; 27(22): 31144-31163, 2019 Oct 28.
Article in English | MEDLINE | ID: mdl-31684352

ABSTRACT

Solution-processed, lead halide-based perovskite solar cells have recently overcome important challenges, offering low-cost and high solar power conversion efficiencies. However, they still undergo unoptimized light collection due mainly to the thin (∼350 nm) polycrystalline absorber layers. Moreover, their high toxicity (due to the presence of lead in perovskite crystalline structures) makes it necessary that the thickness of the absorber layers to be further reduced. Here we address these issues via embedding spherical plasmonic nanoparticles of various sizes, composition, concentrations, and vertical positions, in realistic halide-based perovskite solar cells. We theoretically show that plasmon-enhanced near-field effects and scattering leads to a device photocurrent enhancement up to ∼7.3% when silver spheres are embedded inside the perovskite layer. An even further enhancement, up to ∼12%, is achieved with the combination of silver spheres in perovskite and aluminum spheres inside the hole transporting layer (PEDOT:PSS). The proper involvement of nanoparticles allows the employment of much thinner perovskite layers (up to 150 nm), reducing thus significantly the toxicity. Providing the requirements related to the design parameters of nanoparticles, our study establishes guidelines for a future development of highly-efficient, environmentally friendly and low-cost plasmonic perovskite solar cells.

4.
Materials (Basel) ; 12(6)2019 Mar 14.
Article in English | MEDLINE | ID: mdl-30875786

ABSTRACT

Inorganic and organic-inorganic (hybrid) perovskite semiconductor materials have attracted worldwide scientific attention and research effort as the new wonder semiconductor material in optoelectronics. Their excellent physical and electronic properties have been exploited to boost the solar cells efficiency beyond 23% and captivate their potential as competitors to the dominant silicon solar cells technology. However, the fundamental principles in Physics, dictate that an excellent direct band gap material for photovoltaic applications must be also an excellent light emitter candidate. This has been realized for the case of perovskite-based light emitting diodes (LEDs) but much less for the case of the respective laser devices. Here, the strides, exclusively in lasing, made since 2014 are presented for the first time. The solution processability, low temperature crystallization, formation of nearly defect free, nanostructures, the long range ambipolar transport, the direct energy band gap, the high spectral emission tunability over the entire visible spectrum and the almost 100% external luminescence efficiency show perovskite semiconductors' potential to transform the nanophotonics sector. The operational principles, the various adopted material and laser configurations along the future challenges are reviewed and presented in this paper.

5.
ACS Sens ; 3(1): 135-142, 2018 01 26.
Article in English | MEDLINE | ID: mdl-29192496

ABSTRACT

Hybrid lead halide spin coated perovskite films have been successfully tested as portable, flexible, operated at room temperature, self-powered, and ultrasensitive ozone sensing elements. The electrical resistance of the hybrid lead mixed halide perovskite (CH3NH3PbI3-xClx) sensing element, was immediately decreased when exposed to an ozone (O3) environment and manage to recover its pristine electrical conductivity values within few seconds after the complete removal of ozone gas. The sensing measurements showed different response times at different gas concentrations, good repeatability, ultrahigh sensitivity and fast recovery time. To the best of our knowledge, this is the first time that a lead halide perovskite semiconductor material is demonstrating its sensing properties in an ozone environment. This work shows the potential of hybrid lead halide based perovskites as reliable sensing elements, serving the objectives of environmental control, with important socioeconomic impact.


Subject(s)
Calcium Compounds/chemistry , Oxides/chemistry , Ozone/analysis , Titanium/chemistry , Electric Conductivity , Electric Impedance , Lead , Reproducibility of Results , Semiconductors , Sensitivity and Specificity , Temperature
6.
Chem Asian J ; 13(3): 240-249, 2018 Feb 02.
Article in English | MEDLINE | ID: mdl-29251432

ABSTRACT

Metal halide based perovskite solar cells (PSCs) are considered among the most promising photovoltaic technologies, and already present certified efficiencies that surpass 22 %. The high performance and low fabrication cost make this technology competitive with that of state-of-the-art thin-film photovoltaics. However, PSCs present some striking disadvantages that hinder their commercialization, including short operational lifetimes, high toxicity, and hysteresis effects, which lower both the performance and long-term stability of the devices. Herein, work conducted within the last two years is summarized with regard to addressing the challenges of low-temperature-processed planar inverted PSCs composed of graphene-based materials. In addition, critical challenges and the prospects of this field are discussed and some prospects for future research directions are proposed.

7.
ACS Appl Mater Interfaces ; 9(50): 43910-43919, 2017 Dec 20.
Article in English | MEDLINE | ID: mdl-29188719

ABSTRACT

CH3NH3PbI3 perovskite thin films have been deposited on glass/indium tin oxide/hole transport layer (HTL) substrates, utilizing two different materials as the HTLs. In the first configuration, the super hydrophilic polymer poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate), known as PEDOT:PSS, was employed as the HTL material, whereas in the second case, the nonwetting poly(triarylamine) semiconductor polymer, known as PTAA, was used. It was found that when PTAA is used as the HTL material, the averaged power conversion efficiency (PCE) of the perovskite solar cells (PSCs) remarkably increases from 12.60 to 15.67%. To explore the mechanism behind this enhancement, the aforementioned perovskite/HTL arrangements were investigated by time-resolved transient absorption spectroscopy (TAS) performed under inert conditions. By means of TAS, the charge transfer, carrier trapping, and hole injection dynamics from the photoexcited perovskite layers to the HTL can be directly monitored via the characteristic bleaching profile of the perovskite at ∼750 nm. TAS studies revealed faster relaxation times and decay dynamics when the PTAA polymer is employed, which potentially account for the enhanced PCE observed. The TAS results are correlated with the structure and crystalline quality of the corresponding perovskite films, investigated by scanning electron microscopy, X-ray diffraction, atomic force microscopy, micro-photoluminescence, and transmittance spectroscopy. It is concluded that TAS is a benchmark technique for the understanding of the carrier transport mechanisms in PSCs and constitutes a figure-of-merit tool toward their efficiency improvement.

8.
ACS Nano ; 11(4): 3517-3531, 2017 04 25.
Article in English | MEDLINE | ID: mdl-28240547

ABSTRACT

The development of large-scale production methods of two-dimensional (2D) crystals, with on-demand control of the area and thickness, is mandatory to fulfill the potential applications of such materials for photovoltaics. Inverted bulk heterojunction (BHJ) organic solar cell (OSC), which exploits a polymer-fullerene binary blend as the active material, is one potentially important application area for 2D crystals. A large ongoing effort is indeed currently devoted to the introduction of 2D crystals in the binary blend to improve the charge transport properties. While it is expected that the nanoscale domains size of the different components of the blend will significantly impact the performance of the OSC, to date, there is no evidence of quantitative information on the interplay between 2D crystals and fullerene domains size. Here, we demonstrate that by matching the size of WSe2 few-layer 2D crystals, produced by liquid-phase exfoliation, with that of the PC71BM fullerene domain in BHJ OSCs, we obtain power conversion efficiencies (PCEs) of ∼9.3%, reaching a 15% improvement with respect to standard binary devices (PCE = 8.10%), i.e., without the addition of WSe2 flakes. This is the highest ever reported PCE for 2D material-based OSCs, obtained thanks to the enhanced exciton generation and exciton dissociation at the WSe2-fullerene interface and also electron extraction to the back metal contact as a consequence of a balanced charge carriers mobility. These results push forward the implementation of transition-metal dichalcogenides to boost the performance of BHJ OSCs.

9.
Nanoscale Horiz ; 1(5): 375-382, 2016 Sep 15.
Article in English | MEDLINE | ID: mdl-32260627

ABSTRACT

Since the isolation of free standing graphene in 2004, graphene research has experienced a phenomenal growth. Due to its exceptional electronic, optical and mechanical properties, graphene is believed to be the next wonder material for optoelectronics. The enhanced electrical conductivity, combined with its high transparency in the visible and near-infrared regions of the spectrum, enabled graphene to be an ideal low cost indium-tin oxide (ITO) substitute. Solution-processed reduced graphene oxide combines the unique optoelectrical properties of graphene with large area deposition and flexible substrates rendering it compatible with roll-to-roll manufacturing methods. This paper provides an overview of recent research progress in the application and consequent physical-chemical properties of solution-processed reduced graphene oxide-based films as transparent conductive electrodes (TCEs) in organic photovoltaic (OPV) cells. Reduced graphene oxide (rGO) can be effectively utilized as the TCE in flexible OPVs, where the brittle and expensive ITO is incompatible. The prospects and future research trends in graphene-based TCEs are also discussed.

10.
ACS Appl Mater Interfaces ; 7(32): 17756-64, 2015 Aug 19.
Article in English | MEDLINE | ID: mdl-26222681

ABSTRACT

Enhancement of the stability of bulk heterojunction (BHJ) organic photovoltaic (OPV) devices is reported by the addition of surfactant-free aluminum (Al) nanoparticles (NPs) into the photoactive layer. The universality of the effect is demonstrated for two different BHJ systems, namely, the well-studied poly(3-hexylthiophene-2,5-diyl):phenyl-C61-butyric acid methyl ester (P3HT:PCBM) as well as the high efficient poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)]:[6,6]-phenyl-C71-butyric acid methyl ester (PCDTBT:PC71BM). It is shown that the lifetime of the devices with Al NPs, operating under continuous one-sun illumination in ambient conditions, is more than three times longer compared to the reference devices. Using complementary analytical techniques for in situ studies, we have explored the underlying mechanisms behind the observed stability improvement in the case of the P3HT:PCBM system. In particular, laser-induced fluorescence (LIF), photoluminescence decay and Fourier transform infrared (FTIR) spectroscopy experiments were performed and complemented with device degradation electrical measurements. It is found that the embedded Al NPs act as performance stabilizers, giving rise to enhanced structural stability of the active blend. Furthermore, it is revealed that the observed improvement can also be ascribed to NP-mediated mitigation of the photo-oxidation effect. This study addresses a major issue in OPV devices, that is, photoinduced stability, indicating that the exploitation of Al NPs could be a successful approach toward fabricating OPVs exhibiting long-term operating lifetimes.

11.
Chem Commun (Camb) ; 50(40): 5285-7, 2014 May 25.
Article in English | MEDLINE | ID: mdl-24419072

ABSTRACT

Enhancement in the efficiency of air processed bulk heterojunction photovoltaic devices is demonstrated via the addition of highly stable uncapped gold (Au) and aluminum (Al) nanoparticles (NPs) into the photoactive layer. An enhancement in conversion efficiency by 15% is observed, which can be attributed to Localised Surface Plasmon Resonance effects at the small diameter Au NPs and to efficient scattering by the large diameter Al NPs.

SELECTION OF CITATIONS
SEARCH DETAIL
...