Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Genetica ; 130(3): 267-80, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17031495

ABSTRACT

In deletion-mapping of W-specific RAPD (W-RAPD) markers and putative female determinant gene (Fem), we used X-ray irradiation to break the translocation-carrying W chromosome (W( Ze )). We succeeded in obtaining a fragment of the W( Ze ) chromosome designated as Ze (W), having 3 of 12 W-RAPD markers (W-Bonsai, W-Yukemuri-S, W-Yukemuri-L). Inheritance of the Ze (W) fragment by males indicates that it does not include the Fem gene. On the basis of these results, we determined the relative positions of W-Yukemuri-S and W-Yukemuri-L, and we narrowed down the region where Fem gene is located. In addition to the Ze (W) fragment, the Z chromosome was also broken into a large fragment (Z(1)) having the +( sch ) (1-21.5) and a small fragment (Z(2)) having the +( od ) (1-49.6). Moreover, a new chromosomal fragment (Ze (W)Z(2)) was generated by a fusion event between the Ze (W) and the Z(2) fragments. We analyzed the genetic behavior of the Z(1) fragment and the Ze (W)Z(2) fragment during male (Z/Z(1) Ze (W)Z(2)) and female (Z(1) Ze (W)Z(2)/W) meiosis using phenotypic markers. It was observed that the Z(1) fragment and the Z or the W chromosomes separate without fail. On the other hand, non-disjunction between the Ze (W)Z(2) fragment and the Z chromosome and also between the Ze (W)Z(2) fragment and the W chromosome occurred. Furthermore, the females (2A: Z/Ze (W)Z(2)/W) and males (2A: Z/Z(1)) resulting from non-disjunction between the Ze (W)Z(2) fragment and the W chromosome had phenotypic defects: namely, females exhibited abnormal oogenesis and males were flapless due to abnormal indirect flight muscle structure. These results suggest that Z(2) region of the Z chromosome contains dose-sensitive gene(s), which are involved in oogenesis and indirect flight muscle development.


Subject(s)
Bombyx/genetics , Chromosome Aberrations , Sex Chromosomes , Animals , Chromosome Mapping , Female , Gene Deletion , Genetic Markers , Male , Models, Genetic , Muscular Dystrophies/genetics , Oogenesis , Sex Factors , Translocation, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...