Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Endocrinol ; 165(2): 493-501, 2000 May.
Article in English | MEDLINE | ID: mdl-10810313

ABSTRACT

Oestrogen stimulates the proliferation of pituitary cells. The present study was designed to clarify the involvement of transforming growth factor-alpha (TGF-alpha) in the oestrogen-induced growth of mouse pituitary cells in vitro. Anterior pituitary cells obtained from ICR male mice were cultured in a primary serum-free culture system. Proliferation of pituitary cells was detected by monitoring the cellular uptake of bromodeoxyuridine. Secretory cell types were immunocytochemically determined. Treatment with TGF-alpha (0.1 and 1 ng/ml) for 5 days stimulated cell proliferation. Since TGF-alpha binds to the epidermal growth factor (EGF) receptor, this action may be exerted through the EGF receptor. Oestradiol-17beta (OE(2), 10(-)(9) M) stimulated mammotrophic and corticotrophic cell proliferation. RG-13022, an EGF receptor inhibitor, inhibited the cell proliferation induced by EGF or OE(2), showing that the EGF receptor was involved in the growth response in mammotrophs and corticotrophs. Treatment with antisense TGF-alpha oligodeoxynucleotide (ODN) inhibited the cell proliferation induced by OE(2), but treatment with antisense EGF ODN did not. RT-PCR analysis revealed that OE(2) stimulated TGF-alpha mRNA and EGF receptor mRNA expression. These results indicate that TGF-alpha mediates the stimulatory effect of oestrogen on the pituitary cell proliferation in a paracrine or autocrine manner, and that EGF receptor expression is stimulated by oestrogen.


Subject(s)
Estradiol/pharmacology , Pituitary Gland, Anterior/cytology , Transforming Growth Factor alpha/pharmacology , Animals , Cell Division/drug effects , Cells, Cultured , Epidermal Growth Factor/genetics , Epidermal Growth Factor/pharmacology , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , Gene Expression/drug effects , Male , Mice , Mice, Inbred ICR , Oligonucleotides, Antisense/pharmacology , Pituitary Gland, Anterior/drug effects , RNA, Messenger/analysis , Reverse Transcriptase Polymerase Chain Reaction , Stimulation, Chemical , Transforming Growth Factor alpha/genetics , Tyrphostins/pharmacology
2.
Cell Tissue Res ; 299(2): 237-43, 2000 Feb.
Article in English | MEDLINE | ID: mdl-10741464

ABSTRACT

Pituitary tumor GH3 cells synthesize and secrete both growth hormone (GH) and prolactin (PRL). Morphological and functional changes of GH3 cells induced by epidermal growth factor (EGF, 10 nM), insulin (300 nM), and estradiol-17beta (E2, 1 nM) were studied. Treatment of cultures of GH3 cells for 6 days with EGF, insulin, or E2 alone, and with EGF plus E2 did not affect the total number of GH3 cells, but a combination of EGF, insulin, and E2 decreased the total number of GH3 cells compared with control treatment. DNA-synthesizing cells were detected by monitoring 5-bromo-2'-deoxyuridine (BrdU) uptake. EGF, E2, or a combination of EGF, insulin, and E2 significantly decreased the proportion of BrdU-labeled cells (21.1+/-1.7%, 21.0+/-1.4%, 18.2+/-1.3%; P<0.05, P<0.05, P<0.01, respectively) compared with control treatment (28.6+/-1.5%), but insulin did not (31.4+/-2.4%). Immunocytochemical analysis of GH3 cells cultured in 5% fetal calf serum-supplemented medium (control) showed that about 70% of all GH3 cells were GH-immunoreactive cells (GH-ir cells), apparently containing only GH, and 14% were mammosomatotrophs (MS cells), containing both GH and PRL, while PRL-immunoreactive cells (PRL-ir cells), containing only PRL, were not detected. No GH or PRL immunoreactivity could be detected in the remaining cells (15%). EGF decreased the proportion of GH-ir cells. The effects of EGF were enhanced by simultaneous exposure to insulin and E2; this decreased the proportion of GH-ir cells to about 20% of the total GH3 cells and significantly increased the proportion of MS cells to 300% of controls. Treatment with EGF plus insulin, EGF plus E2, or a combination of EGF, insulin, and E2 all stimulated the appearance of PRL-ir cells. Exposure to EGF caused a significant decrease in GH mRNA (P<0.01) and a significant increase in PRL mRNA (P<0.05). These observations suggest that EGF is closely involved in differentiation of PRL-ir cells from GH-ir cells via MS cells in GH3 cell cultures. Cytosine arabinoside (10(-7) M), an inhibitor of cell division, did not affect the changes in proportion of the three cell types induced by treatment with a combination of EGF, insulin, and E2. It is therefore probable that the transdifferentiation does not require mitosis of the GH3 cells.


Subject(s)
Epidermal Growth Factor/pharmacology , Estradiol/pharmacology , Insulin/pharmacology , Pituitary Gland, Anterior/drug effects , Pituitary Neoplasms/pathology , Prolactin/metabolism , Animals , Cell Differentiation/drug effects , Culture Media/pharmacology , DNA Replication/drug effects , Drug Synergism , Growth Hormone/biosynthesis , Microscopy, Fluorescence , Pituitary Gland, Anterior/metabolism , Pituitary Neoplasms/metabolism , Rats , Tumor Cells, Cultured/drug effects , Tumor Cells, Cultured/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...