Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Evol Dev ; 25(3): 197-208, 2023 05.
Article in English | MEDLINE | ID: mdl-36946416

ABSTRACT

The present contribution is chiefly a review, augmented by some new results on amphioxus and lamprey anatomy, that draws on paleontological and developmental data to suggest a scenario for cranial cartilage evolution in the phylum chordata. Consideration is given to the cartilage-related tissues of invertebrate chordates (amphioxus and some fossil groups like vetulicolians) as well as in the two major divisions of the subphylum Vertebrata (namely, agnathans, and gnathostomes). In the invertebrate chordates, which can be considered plausible proxy ancestors of the vertebrates, only a viscerocranium is present, whereas a neurocranium is absent. For this situation, we examine how cartilage-related tissues of this head region prefigure the cellular cartilage types in the vertebrates. We then focus on the vertebrate neurocranium, where cyclostomes evidently lack neural-crest derived trabecular cartilage (although this point needs to be established more firmly). In the more complex gnathostome, several neural-crest derived cartilage types are present: namely, the trabecular cartilages of the prechordal region and the parachordal cartilage the chordal region. In sum, we present an evolutionary framework for cranial cartilage evolution in chordates and suggest aspects of the subject that should profit from additional study.


Subject(s)
Lancelets , Vertebrates , Animals , Vertebrates/genetics , Skull , Cartilage , Neural Crest , Biological Evolution
2.
Elife ; 72018 10 25.
Article in English | MEDLINE | ID: mdl-30355452

ABSTRACT

The heterogeneity and compartmentalization of stem cells is a common principle in many epithelia, and is known to function in epithelial maintenance, but its other physiological roles remain elusive. Here we show transcriptional and anatomical contributions of compartmentalized epidermal stem cells in tactile sensory unit formation in the mouse hair follicle. Epidermal stem cells in the follicle upper-bulge, where mechanosensory lanceolate complexes innervate, express a unique set of extracellular matrix (ECM) and neurogenesis-related genes. These epidermal stem cells deposit an ECM protein called EGFL6 into the collar matrix, a novel ECM that tightly ensheathes lanceolate complexes. EGFL6 is required for the proper patterning, touch responses, and αv integrin-enrichment of lanceolate complexes. By maintaining a quiescent original epidermal stem cell niche, the old bulge, epidermal stem cells provide anatomically stable follicle-lanceolate complex interfaces, irrespective of the stage of follicle regeneration cycle. Thus, compartmentalized epidermal stem cells provide a niche linking the hair follicle and the nervous system throughout the hair cycle.


Subject(s)
Epidermal Cells/cytology , Hair Follicle/cytology , Stem Cell Niche , Stem Cells/cytology , Touch/physiology , Animals , Axons/metabolism , Calcium-Binding Proteins , Cell Adhesion , Cell Adhesion Molecules , Epidermal Cells/metabolism , Epidermal Cells/ultrastructure , Extracellular Matrix/metabolism , Extracellular Matrix Proteins/metabolism , Gene Expression Regulation , Glycoproteins/metabolism , Hair Follicle/innervation , Integrin alphaV/metabolism , Mice, Knockout , Neoplasm Proteins/metabolism , Neurons/cytology , Peptides/metabolism , Schwann Cells/metabolism , Stem Cells/metabolism , Stem Cells/ultrastructure
3.
Sci Rep ; 7: 39967, 2017 01 06.
Article in English | MEDLINE | ID: mdl-28059168

ABSTRACT

Despite growing demand for truly naïve imaging, label-free observation of cilium-related structure remains challenging, and validation of the pertinent molecules is correspondingly difficult. In this study, in retinas and cultured cells, we distinctively visualized Rootletin filaments in rootlets in the second harmonic generation (SHG) channel, integrated in custom coherent nonlinear optical microscopy (CNOM) with a simple, compact, and ultra-broadband supercontinuum light source. This SHG signal was primarily detected on rootlets of connecting cilia in the retinal photoreceptor and was validated by colocalization with anti-Rootletin staining. Transfection of cells with Rootletin fragments revealed that the SHG signal can be ascribed to filaments assembled from the R234 domain, but not to cross-striations assembled from the R123 domain. Consistent with this, Rootletin-depleted cells lacked SHG signal expected as centrosome linker. As a proof of concept, we confirmed that similar fibrous SHG was observed even in unicellular ciliates. These findings have potential for broad applications in clinical diagnosis and biophysical experiments with various organisms.


Subject(s)
Cytoskeletal Proteins/metabolism , Retina/ultrastructure , Second Harmonic Generation Microscopy/methods , Animals , COS Cells , Cell Line, Tumor , Chlorocebus aethiops , Cilia , Humans , Rats , Retina/metabolism
4.
Fundam Clin Pharmacol ; 30(5): 419-28, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27214102

ABSTRACT

There have been several reported studies on the distribution and/or toxicity of nanosilica particles. However, the influence of these particles on blood vessels through which they are distributed is poorly understood. Hence, we investigated the effects of nano- and micromaterials on blood vessel shrinkage and relaxation. Nanosilica particles with diameters of 70 nm (nSP70) were used as the nanomaterial, and particles of 300 and 1000 nm (nSP300 and mSP1000, respectively) were used as micromaterials. A rat thoracic aorta was used as the test blood vessel. The nano- and micromaterials had no effect on vessel shrinkage. Of the nano- and micromaterials tested, only nSP70 strongly evoked vascular relaxation. Vascular relaxation evoked by nSP70 was almost completely inhibited by the phosphoinositide 3-kinase (PI3K) inhibitor wortmannin. In addition, the selective nitric oxide synthesis inhibitor NG-nitro-l-arginine methyl ester, which inhibits endothelial nitric oxide synthase (eNOS) downstream of PI3K signaling, inhibited vascular relaxation evoked by nSP70. In an analysis using bovine aortic endothelial cells (bAECs), nSP70 phosphorylated protein kinase B (AKT) and eNOS acted downstream of PI3K signaling. PI3K inhibition by wortmannin reduced AKT and eNOS phosphorylation. These results demonstrated that 70-nm amorphous nanosilica particles evoked vascular relaxation through PI3K/Akt/eNOS signaling. Moreover, it was suggested that nanomaterials, in general, control or disrupt vascular function by activating a known signal cascade.


Subject(s)
Nanoparticles/administration & dosage , Nitric Oxide Synthase Type III/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Silicon Dioxide/pharmacology , Vasodilation/physiology , Animals , Aorta, Thoracic/drug effects , Aorta, Thoracic/metabolism , Cattle , Cells, Cultured , Dose-Response Relationship, Drug , Male , Nitric Oxide Synthase Type III/antagonists & inhibitors , Organ Culture Techniques , Particle Size , Phosphoinositide-3 Kinase Inhibitors , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Rats , Rats, Wistar , Signal Transduction/drug effects , Signal Transduction/physiology , Vasodilation/drug effects
5.
PLoS Genet ; 11(10): e1005587, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26451951

ABSTRACT

Granule cells (GCs) are the major glutamatergic neurons in the cerebellum, and GC axon formation is an initial step in establishing functional cerebellar circuits. In the zebrafish cerebellum, GCs can be classified into rostromedial and caudolateral groups, according to the locations of their somata in the corresponding cerebellar lobes. The axons of the GCs in the caudolateral lobes terminate on crest cells in the dorsal hindbrain, as well as forming en passant synapses with Purkinje cells in the cerebellum. In the zebrafish mutant shiomaneki, the caudolateral GCs extend aberrant axons. Positional cloning revealed that the shiomaneki (sio) gene locus encodes Col4a6, a subunit of type IV collagen, which, in a complex with Col4a5, is a basement membrane (BM) component. Both col4a5 and col4a6 mutants displayed similar abnormalities in the axogenesis of GCs and retinal ganglion cells (RGCs). Although type IV collagen is reported to control axon targeting by regulating the concentration gradient of an axonal guidance molecule Slit, Slit overexpression did not affect the GC axons. The structure of the BM surrounding the tectum and dorsal hindbrain was disorganized in the col4a5 and col4a6 mutants. Moreover, the abnormal axogenesis of the caudolateral GCs and the RGCs was coupled with aberrant BM structures in the type IV collagen mutants. The regrowth of GC axons after experimental ablation revealed that the original and newly formed axons displayed similar branching and extension abnormalities in the col4a6 mutants. These results collectively suggest that type IV collagen controls GC axon formation by regulating the integrity of the BM, which provides axons with the correct path to their targets.


Subject(s)
Cerebellum/metabolism , Collagen Type IV/genetics , Retinal Ganglion Cells/metabolism , Zebrafish/genetics , Animals , Axons/metabolism , Basement Membrane/growth & development , Basement Membrane/metabolism , Cerebellum/growth & development , Collagen Type IV/metabolism , Extracellular Matrix/genetics , Extracellular Matrix/metabolism , Nerve Tissue Proteins/genetics , Purkinje Cells/metabolism , Zebrafish/growth & development , Zebrafish Proteins/genetics
6.
Development ; 142(7): 1279-86, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25742796

ABSTRACT

Birds and mammals, phylogenetically close amniotes with similar post-gastrula development, exhibit little conservation in their post-fertilization cleavage patterns. Data from the mouse suggest that cellular morphogenesis and molecular signaling at the cleavage stage play important roles in lineage specification at later (blastula and gastrula) stages. Very little is known, however, about cleavage-stage chick embryos, owing to their poor accessibility. This period of chick development takes place before egg-laying and encompasses several fundamental processes of avian embryology, including zygotic gene activation (ZGA) and blastoderm cell-layer increase. We have carried out morphological and cellular analyses of cleavage-stage chick embryos covering the first half of pre-ovipositional development, from Eyal-Giladi and Kochav stage (EGK-) I to EGK-V. Scanning electron microscopy revealed remarkable subcellular details of blastomere cellularization and subgerminal cavity formation. Phosphorylated RNA polymerase II immunostaining showed that ZGA in the chick starts at early EGK-III during the 7th to 8th nuclear division cycle, comparable with the time reported for other yolk-rich vertebrates (e.g. zebrafish and Xenopus). The increase in the number of cell layers after EGK-III is not a direct consequence of oriented cell division. Finally, we present evidence that, as in the zebrafish embryo, a yolk syncytial layer is formed in the avian embryo after EGK-V. Our data suggest that several fundamental features of cleavage-stage development in birds resemble those in yolk-rich anamniote species, revealing conservation in vertebrate early development. Whether this conservation lends morphogenetic support to the anamniote-to-amniote transition in evolution or reflects developmental plasticity in convergent evolution awaits further investigation.


Subject(s)
Cleavage Stage, Ovum/cytology , Embryonic Development , Vertebrates/embryology , Animals , Cell Nucleus/metabolism , Chick Embryo , Cleavage Stage, Ovum/ultrastructure , Egg Yolk/cytology , Embryo, Nonmammalian/cytology , Embryo, Nonmammalian/ultrastructure , Gene Expression Regulation, Developmental , Giant Cells/cytology , Mitosis , Phosphorylation , Phosphoserine/metabolism , RNA Polymerase II/metabolism , Zygote/metabolism
7.
FASEB J ; 29(5): 2137-49, 2015 May.
Article in English | MEDLINE | ID: mdl-25678623

ABSTRACT

Endoplasmic reticulum (ER) stress is a cellular condition in which unfolded proteins accumulate in the ER because of various but specific causes. Physiologic ER stress occurs transiently during myoblast differentiation, and although its cause remains unknown, it plays a critical role in myofiber formation. To examine the mechanism underlying ER stress, we monitored ER morphology during differentiation of murine myoblasts. Novel ER-derived structures transiently appeared prior to myoblast fusion both in vitro and in vivo. Electron microscopy studies revealed that these structures consisted of pseudoconcentric ER cisternae with narrow lumens. Similar structures specifically formed by pharmacologically induced ER Ca(2+) depletion, and inhibition of ER Ca(2+) efflux channels in differentiating myoblasts considerably suppressed ER-specific deformation and ER stress signaling. Thus, we named the novel structures stress-activated response to Ca(2+) depletion (SARC) bodies. Prior to SARC body formation, stromal interaction molecule 1 (STIM1), an ER Ca(2+) sensor protein, formed ER Ca(2+) depletion-specific clusters. Furthermore, myoblast differentiation manifested by myoblast fusion did not proceed under the same conditions as inhibition of ER Ca(2+) depletion. Altogether, these observations suggest that ER Ca(2+) depletion is a prerequisite for myoblast fusion, causing both physiologic ER stress signaling and SARC body formation.


Subject(s)
Calcium/metabolism , Cell Differentiation , Cell Membrane/metabolism , Endoplasmic Reticulum Stress , Endoplasmic Reticulum/metabolism , Myoblasts, Skeletal/cytology , Animals , Blotting, Western , Calcium Channels/metabolism , Cells, Cultured , Immunoenzyme Techniques , Mice , Myoblasts, Skeletal/metabolism , Signal Transduction , Stromal Interaction Molecule 1
8.
Toxicol Rep ; 2: 574-579, 2015.
Article in English | MEDLINE | ID: mdl-28962392

ABSTRACT

Silver nanoparticles (AgNPs) induce the production of reactive oxygen species (ROS) and apoptosis. These effects are enhanced by smaller particles. Using live-cell imaging, we show that AgNPs induced ROS production rapidly in a size-dependent manner after exposure of cells to 70-nm and 1-nm AgNPs (AgNPs-70, AgNPs-1), but not AgNO3. Exposure of cells to 5 µg/mL each of AgNPs-70, AgNPs-1 or AgNO3 for 1 h decreased the cell viability by approximately 40%, 100% and 20%, respectively. ROS were rapidly induced after 5 and 60 min by AgNPs-1 and AgNPs-70, respectively, whereas AgNO3 had no detectable effect. ROS production detected using the reporter dichlorodihydrofluorescein was observed in whole cells and mitochondria 5 and 60 min after exposure to AgNPs-1. The present study is the first, to our knowledge, to report the temporal expression and intracellular localisation of ROS induced by AgNPs.

9.
J Immunol ; 188(5): 2427-36, 2012 Mar 01.
Article in English | MEDLINE | ID: mdl-22279105

ABSTRACT

Intestinal epithelial cells (IECs) have important functions as the first line of defense against diverse microorganisms on the luminal surface. Impaired integrity of IEC has been implicated in increasing the risk for inflammatory disorders in the gut. Notch signaling plays a critical role in the maintenance of epithelial integrity by regulating the balance of secretory and absorptive cell lineages, and also by facilitating epithelial cell proliferation. We show in this article that mice harboring IEC-specific deletion of Rbpj (RBP-J(ΔIEC)), a transcription factor that mediates signaling through Notch receptors, spontaneously develop chronic colitis characterized by the accumulation of Th17 cells in colonic lamina propria. Intestinal bacteria are responsible for the development of colitis, because their depletion with antibiotics prevented the development of colitis in RBP-J(ΔIEC) mice. Furthermore, bacterial translocation was evident in the colonic mucosa of RBP-J(ΔIEC) mice before the onset of colitis, suggesting attenuated epithelial barrier functions in these mice. Indeed, RBP-J(ΔIEC) mice displayed increase in intestinal permeability after rectal administration of FITC-dextran. In addition to the defect in physical barrier, loss of Notch signaling led to arrest of epithelial cell turnover caused by downregulation of Hes1, a transcriptional repressor of p27(Kip1) and p57(Kip2). Thus, epithelial cell-intrinsic Notch signaling ensures integrity and homeostasis of IEC, and this mechanism is required for containment of intestinal inflammation.


Subject(s)
Homeostasis/immunology , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Receptors, Notch/physiology , Signal Transduction/immunology , Animals , Bacterial Translocation/genetics , Bacterial Translocation/immunology , Cell Differentiation/genetics , Cell Differentiation/immunology , Chronic Disease , Colitis/genetics , Colitis/immunology , Colitis/pathology , Gene Deletion , Homeostasis/genetics , Humans , Immunoglobulin J Recombination Signal Sequence-Binding Protein/genetics , Intestinal Mucosa/pathology , Mice , Mice, Knockout , Mice, Transgenic , Receptors, Notch/genetics , Signal Transduction/genetics , Th17 Cells/immunology , Th17 Cells/metabolism , Th17 Cells/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...