Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
Add more filters










Publication year range
1.
PNAS Nexus ; 3(7): pgae255, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39006476

ABSTRACT

Aqueous two-phase systems (ATPSs) are liquid-liquid equilibria between two aqueous phases that usually contain over 70% water content each, which results in a nontoxic organic solvent-free environment for biological compounds and biomolecules. ATPSs have attracted significant interest in applications for formulating carriers (microparticles, nanoparticles, hydrogels, and polymersomes) which can be prepared using the spontaneous phase separation of ATPSs as a driving force, and loaded with a wide range of bioactive materials, including small molecule drugs, proteins, and cells, for delivery applications. This review provides a detailed analysis of various ATPSs, including strategies employed for particle formation, polymerization of droplets in ATPSs, phase-guided block copolymer assemblies, and stimulus-responsive carriers. Processes for loading various bioactive payloads are discussed, and applications of these systems for drug delivery are summarized and discussed.

2.
Aging Cell ; 23(5): e14178, 2024 05.
Article in English | MEDLINE | ID: mdl-38685568

ABSTRACT

Senescence is a heterogenous and dynamic process in which various cell types undergo cell-cycle arrest due to cellular stressors. While senescence has been implicated in aging and many human pathologies, therapeutic interventions remain inadequate due to the absence of a comprehensive set of biomarkers in a context-dependent manner. Polyphenols have been investigated as senotherapeutics in both preclinical and clinical settings. However, their use is hindered by limited stability, toxicity, modest bioavailability, and often inadequate concentration at target sites. To address these limitations, nanocarriers such as polymer nanoparticles and lipid vesicles can be utilized to enhance the efficacy of senolytic polyphenols. Focusing on widely studied senolytic agents-specifically fisetin, quercetin, and resveratrol-we provide concise summaries of their physical and chemical properties, along with an overview of preclinical and clinical findings. We also highlight common signaling pathways and potential toxicities associated with these agents. Addressing challenges linked to nanocarriers, we present examples of senotherapeutic delivery to various cell types, both with and without nanocarriers. Finally, continued research and development of senolytic agents and nanocarriers are encouraged to reduce the undesirable effects of senescence on different cell types and organs. This review underscores the need for establishing reliable sets of senescence biomarkers that could assist in evaluating the effectiveness of current and future senotherapeutic candidates and nanocarriers.


Subject(s)
Drug Carriers , Nanoparticles , Polyphenols , Senotherapeutics , Humans , Polyphenols/pharmacology , Polyphenols/chemistry , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Senotherapeutics/pharmacology , Drug Carriers/chemistry , Animals , Cellular Senescence/drug effects , Quercetin/pharmacology , Quercetin/chemistry
3.
Int J Mol Sci ; 25(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38339015

ABSTRACT

Single-stranded messenger ribonucleic acid (mRNA) plays a pivotal role in transferring genetic information, and tremendous effort has been devoted over the years to utilize its transcription efficacy in therapeutic interventions for a variety of diseases with high morbidity and mortality. Lipid nanocarriers have been extensively investigated for mRNA delivery and enabled the rapid and successful development of mRNA vaccines against SARS-CoV-2. Some constraints of lipid nanocarriers have encouraged the development of alternative delivery systems, such as polymer-based soft nanoparticles, which offer a modular gene delivery platform. Such macromolecule-based nanocarriers can be synthetically articulated for tailored parameters including mRNA protection, loading efficacy, and targeted release. In this review, we highlight recent advances in the development of polymeric architectures for mRNA delivery, their limitations, and the challenges that still exist, with the aim of expediting further research and the clinical translation of such formulations.


Subject(s)
COVID-19 Vaccines , Nanoparticles , Humans , Lipids , Polymers , RNA, Messenger/genetics
4.
Small Methods ; : e2301349, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38193272

ABSTRACT

Oxygen (O2 ), nitric oxide (NO), carbon monoxide (CO), hydrogen sulfide (H2 S), and hydrogen (H2 ) with direct effects, and carbon dioxide (CO2 ) with complementary effects on the condition of various diseases are known as therapeutic gases. The targeted delivery and in situ generation of these therapeutic gases with controllable release at the site of disease has attracted attention to avoid the risk of gas poisoning and improve their performance in treating various diseases such as cancer therapy, cardiovascular therapy, bone tissue engineering, and wound healing. Stimuli-responsive gas-generating sources and delivery systems based on biomaterials that enable on-demand and controllable release are promising approaches for precise gas therapy. This work highlights current advances in the design and development of new approaches and systems to generate and deliver therapeutic gases at the site of disease with on-demand release behavior. The performance of the delivered gases in various biomedical applications is then discussed.

5.
Int J Biol Macromol ; 259(Pt 1): 129181, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38184036

ABSTRACT

The unique features of self-healing hydrogels hold great potential for biomedical applications including injectable hydrogels for cancer treatment, procedures for tumor removal or resection. However, the fabrication of durable and multifunctional self-healing hydrogels composed of biocompatible, green building blocks via versatile synthetic methodology continues to pose a significant challenge. Here, we engineered dialdehyde cellulose (DAC, as a macromolecular bio-crosslinker), and electrosterically stabilized nanocrystalline cellulose (ENCC, as a ligand-targeted drug carrier) to facilitate a strategy for the construction of self-healing hydrogels. Benefiting from its high carboxyl group density, ENCC was functionalized with folic acid (FA) using a non-toxic DMTMM coupling agent and loaded with doxorubicin (DOX, a model drug) through electrostatic interactions. A natural self-healing hydrogel was prepared from carboxymethyl chitosan (CCTS) and DAC mixed with DOX-loaded FA-ENCC using dynamic Schiff-base and hydrogen linkages. A combination of active supramolecular and vital covalent junctions led to a soft (storage modulus ∼500 Pa) and durable material, with rapid (< 5 min) reconstruction of molecular structure from fractured and injected to intact forms. The DAC-CCTS hydrogel showed an appreciable loading capacity of ∼5 mg g-1. Biocompatibility of the hydrogels was evaluated using cell viability and metabolic activity assays, showing lower metabolic activity due to sustained release of its cargo. These materials offer a versatile, sustainable, and green platform for the efficient construction of hydrogels, based on macro- and nano-engineered cellulose, the most abundant and easily accessible biopolymer.


Subject(s)
Chitosan , Hydrogels , Hydrogels/chemistry , Polymers , Cellulose/chemistry , Chitosan/chemistry , Drug Carriers/chemistry , Doxorubicin/pharmacology , Doxorubicin/chemistry
6.
Cells ; 12(24)2023 12 12.
Article in English | MEDLINE | ID: mdl-38132142

ABSTRACT

The tumor microenvironment (TME) has emerged as a valuable therapeutic target in glioblastoma (GBM), as it promotes tumorigenesis via an increased production of reactive oxygen species (ROS). Immune cells such as microglia accumulate near the tumor and its hypoxic core, fostering tumor proliferation and angiogenesis. In this study, we explored the therapeutic potential of natural polyphenols with antioxidant and anti-inflammatory properties. Notably, flavonoids, including fisetin and quercetin, can protect non-cancerous cells while eliminating transformed cells (2D cultures and 3D tumoroids). We tested the hypothesis that fisetin and quercetin are modulators of redox-responsive transcription factors, for which subcellular location plays a critical role. To investigate the sites of interaction between natural compounds and stress-responsive transcription factors, we combined molecular docking with experimental methods employing proximity ligation assays. Our findings reveal that fisetin decreased cytosolic acetylated high mobility group box 1 (acHMGB1) and increased transcription factor EB (TFEB) abundance in microglia but not in GBM. Moreover, our results suggest that the most powerful modulator of the Nrf2-KEAP1 complex is fisetin. This finding is in line with molecular modeling and calculated binding properties between fisetin and Nrf2-KEAP1, which indicated more sites of interactions and stronger binding affinities than quercetin.


Subject(s)
Flavonoids , Glioblastoma , Humans , Flavonoids/pharmacology , Quercetin/pharmacology , Kelch-Like ECH-Associated Protein 1/metabolism , Microglia/metabolism , NF-E2-Related Factor 2/metabolism , Glioblastoma/drug therapy , Molecular Docking Simulation , Oxidation-Reduction , Tumor Microenvironment
7.
Biomacromolecules ; 24(9): 4064-4077, 2023 09 11.
Article in English | MEDLINE | ID: mdl-37647594

ABSTRACT

The design of multistimuli-responsive soft nanoparticles (NPs) often presents synthetic complexities and limited breadth in exploiting changes surrounding physiological environments. Nanocarriers that could collectively take advantage of several endogenous stimuli can offer a powerful tool in nanomedicine. Herein, we have capitalized on the chemical versatility of a single tertiary amine to construct miktoarm polymer-based nanocarriers that respond to dissolved CO2, varied pH, reactive oxygen species (ROS), and ROS + CO2. Curcumin (Cur), an anti-inflammatory phytopharmaceutic, was loaded into micelles, and we validated the sensitivity of the tertiary amine in tuning Cur release. An in vitro evaluation indicated that Cur encapsulation strongly suppressed its toxicity at high concentrations, significantly inhibited nigericin-induced secretion of interleukin-1ß by THP-1 macrophages, and the proportion of M2/M1 (anti-inflammatory/pro-inflammatory macrophages) was higher for Cur-loaded NPs than for free Cur. Our approach highlights the potential of a simple-by-design strategy in expanding the scope of polymeric NPs in drug delivery.


Subject(s)
Carbon Dioxide , Curcumin , Reactive Oxygen Species , Macrophages , Curcumin/pharmacology , Hydrogen-Ion Concentration
8.
Macromol Biosci ; 22(10): e2200174, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35817026

ABSTRACT

Branched star polymers offer exciting opportunities in enhancing the efficacy of nanocarriers in delivering biologically active lipophilic agents. It is demonstrated that the star polymeric architecture can be leveraged to yield soft nanoparticles of vesicular morphology with precisely located stimuli-sensitive chemical entities. Amphiphilic stars of AB2 (A = PEG, B = PCL) composition with/without oxidative stress or reduction responsive units at the core junction of A and B arms, are constructed using synthetic articulation. Fisetin, a natural flavonoid with remarkable anti-inflammatory and antioxidant properties, but of limited clinical value due to its poor aqueous solubility, is physically encapsulated into miktoarm star-derived aqueous polymersomes. Polymersomes and fisetin are evaluated separately, and in combination, in human microglia (HMC3), to show if i) polymersomes are toxic; ii) fisetin reduces the abundance of reactive oxygen species (ROS); and iii) fisetin modulates the activation of ERK1/2. These signaling molecules and pathways are implicated in inflammatory processes and cell survival. Fisetin, both incorporated and nonincorporated into polymersomes, reduces ROS and ERK1/2 phosphorylation in lipopolysaccharide-treated human microglia, normalizing excessive oxidative stress and ERK-mediated signaling.


Subject(s)
Microglia , Stimuli Responsive Polymers , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Flavonols/pharmacology , Humans , Lipopolysaccharides/pharmacology , Microglia/metabolism , Polymers/chemistry , Reactive Oxygen Species/metabolism
9.
Food Chem ; 387: 132888, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35397274

ABSTRACT

Coffee is used as flavor or health-promoting additive in thermally processed food. In this study, ground coffee and freeze-dried coffee extracts were evaluated in terms of their thermal stabilities, and for the first time heat resistance of fractions (mono-, dichlorogenic acids and caffeine) with different roasting levels was evaluated. It observed that the degradation of green coffee bean ingredients began at 150 °C, and for the re-heated light and dark roasted, in the range of 171-188 °C. The lyophilized extracts were more stable and their degradation began around 160 °C. However, with the re-treatment (cooking, baking, frying) of the coffee extract fractions, the degradation of the monochlorogenic acids commenced at 114 °C, while for dichlorogenics at 108 °C and caffeine at 146 °C. Monochlorogenic acids in Robusta coffee showed high antioxidant activity (55-70%) and the highest content of fiber (13-17%). Coffee could be used to fortify food.


Subject(s)
Coffea , Coffee , Caffeine , Hot Temperature , Plant Extracts , Seeds
10.
Mol Pharm ; 19(6): 1687-1703, 2022 06 06.
Article in English | MEDLINE | ID: mdl-35157463

ABSTRACT

Self-assembly of amphiphilic macromolecules has provided an advantageous platform to address significant issues in a variety of areas, including biology. Such soft nanoparticles with a hydrophobic core and hydrophilic corona, referred to as micelles, have been extensively investigated for delivering lipophilic therapeutics by physical encapsulation. Polymeric vesicles or polymersomes with similarities in morphology to liposomes continue to play an essential role in understanding the behavior of cell membranes and, in addition, have offered opportunities in designing smart nanoformulations. With the evolution in synthetic methodologies to macromolecular precursors, the construction of such assemblies can now be modulated to tailor their properties to match desired needs. This review brings into focus the current state-of-the-art in the design of polymersomes using amphiphilic miktoarm star polymers through a detailed analysis of the synthesis of miktoarm star polymers with tuned lengths of varied polymeric arms, their self-assembly, and applications in drug delivery.


Subject(s)
Drug Delivery Systems , Nanoparticles , Drug Delivery Systems/methods , Hydrophobic and Hydrophilic Interactions , Micelles , Polymers/chemistry
11.
Nanomedicine ; 37: 102441, 2021 10.
Article in English | MEDLINE | ID: mdl-34302989

ABSTRACT

A fundamental problem in oncology is that anticancer chemotherapeutics kill both cancer and healthy cells in the surrounding tissues. Resveratrol is a natural antioxidant with intriguing and opposing biological properties: it reduces viability of some cancer cells but not of non-transformed ones (in equimolar concentrations). Therefore, we examined resveratrol in human non-transformed primary astrocytes and astrocytoma. Resveratrol reduced reactive oxygen species in astrocytes, but not in astrocytoma. Such cell-type dependent response is particularly evident with analyses at the single cell level showing clear population difference in high and low glutathione levels. Due to resveratrol's poor aqueous solubility that limits its use in clinics, we incorporated it into stimulus-responsive micelles assembled from miktoarm polymers. This could be an attractive chemotherapeutic delivery strategy in nano-oncology. As a proof of principle, we show that these formulations containing resveratrol markedly decrease astrocytoma viability, particularly in combination with temozolomide, a first line chemotherapeutic for astrocytoma.


Subject(s)
Astrocytes/drug effects , Astrocytoma/drug therapy , Nanoparticles/chemistry , Resveratrol/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Astrocytoma/metabolism , Astrocytoma/pathology , Cell Line, Tumor , Humans , Nanoparticles/therapeutic use , Primary Cell Culture , Reactive Oxygen Species/metabolism , Resveratrol/chemistry , Single-Cell Analysis
12.
Macromol Biosci ; 21(8): e2100105, 2021 08.
Article in English | MEDLINE | ID: mdl-34117840

ABSTRACT

Soft nanoparticles continue to offer a promising platform for the encapsulation and controlled delivery of poorly water-soluble drugs and help enhance their bioavailability at targeted sites. Linear amphiphilic block copolymers are the most extensively investigated in formulating delivery vehicles. However, more recently, there has been increasing interest in utilizing branched macromolecules for nanomedicine, as these have been shown to lower critical micelle concentrations, form particles of smaller dimensions, facilitate the inclusion of varied compositions and function-based entities, as well as provide prolonged and sustained release of cargo. In this review, it is aimed to discuss some of the key variables that are studied in tailoring branched architecture-based assemblies, and their influence on drug loading and delivery. By understanding structure-property relationships in these formulations, one can better design branched star polymers with suitable characteristics for efficient therapeutic interventions. The role played by polymer composition, chain architecture, crosslinking, stereocomplexation, compatibility between polymers and drugs, drug/polymer concentrations, and self-assembly methods in their performance as nanocarriers is highlighted.


Subject(s)
Nanoparticles , Polymers , Drug Carriers , Drug Compounding/methods , Drug Delivery Systems/methods , Micelles , Nanomedicine , Nanoparticles/therapeutic use
13.
Molecules ; 26(4)2021 Feb 03.
Article in English | MEDLINE | ID: mdl-33546127

ABSTRACT

Professor Todd B [...].


Subject(s)
Chemistry, Inorganic/history , History, 20th Century , History, 21st Century
14.
Macromol Biosci ; 21(2): e2000305, 2021 02.
Article in English | MEDLINE | ID: mdl-33620748

ABSTRACT

Branched architectures with asymmetric polymeric arms provide an advantageous platform for the construction of tailored nanocarriers for therapeutic interventions. Simple and adaptable synthetic methodologies to amphiphilic miktoarm star polymers have been developed in which spatial location of reactive oxygen species (ROS) and glutathione (GSH) responsive entities is articulated to be on the corona shell surface or inside the core. The design of such architectures is facilitated through versatile building blocks and selected combinations of ring-opening polymerization, Steglich esterification, and alkyne-azide click reactions. Soft nanoparticles from aqueous self-assembly of these stimuli responsive miktoarm stars have low critical micelle concentrations and high drug loading efficiencies. Partial corona shedding upon response to ROS is accompanied by an increase in drug release, without significant changes to overall micelle morphology. The location of the GSH responsive unit at the core leads to micelle disassembly and complete drug release. Curcumin loaded soft nanoparticles show higher efficiencies in preventing ROS generation in extracellular and cellular environments, and in ROS scavenging in human glioblastoma cells. The ease in synthetic elaboration and an understanding of structure-property relationships in stimuli responsive nanoparticles offer a facile venue for well-controlled drug delivery, based on the extra- and intracellular concentrations of ROS and GSH.


Subject(s)
Drug Liberation , Glutathione/chemistry , Micelles , Polymers/chemistry , Reactive Oxygen Species/chemistry , Cell Line, Tumor , Curcumin/pharmacology , Glioblastoma/pathology , Humans , Polyesters/chemistry , Proton Magnetic Resonance Spectroscopy
15.
Molecules ; 25(19)2020 Sep 30.
Article in English | MEDLINE | ID: mdl-33007959

ABSTRACT

Nanostructured hyperbranched macromolecules have been extensively studied at the chemical, physical and morphological levels. The cellular structural and functional complexity of neural cells and their cross-talk have made it rather difficult to evaluate dendrimer effects in a mixed population of glial cells and neurons. Thus, we are at a relatively early stage of bench-to-bedside translation, and this is due mainly to the lack of data valuable for clinical investigations. It is only recently that techniques have become available that allow for analyses of biological processes inside the living cells, at the nanoscale, in real time. This review summarizes the essential properties of neural cells and dendrimers, and provides a cross-section of biological, pre-clinical and early clinical studies, where dendrimers were used as nanocarriers. It also highlights some examples of biological studies employing dendritic polyglycerol sulfates and their effects on glia and neurons. It is the aim of this review to encourage young scientists to advance mechanistic and technological approaches in dendrimer research so that these extremely versatile and attractive nanostructures gain even greater recognition in translational medicine.


Subject(s)
Brain/cytology , Dendrimers/pharmacology , Animals , Anti-Inflammatory Agents/pharmacology , Brain Neoplasms/pathology , Dendrimers/chemistry , Humans , Neurons/cytology , Neurons/drug effects , Neurons/metabolism
16.
Int J Mol Sci ; 21(21)2020 Oct 28.
Article in English | MEDLINE | ID: mdl-33126533

ABSTRACT

Cellular internalization of inorganic, lipidic and polymeric nanoparticles is of great significance in the quest to develop effective formulations for the treatment of high morbidity rate diseases. Understanding nanoparticle-cell interactions plays a key role in therapeutic interventions, and it continues to be a topic of great interest to both chemists and biologists. The mechanistic evaluation of cellular uptake is quite complex and is continuously being aided by the design of nanocarriers with desired physico-chemical properties. The progress in biomedicine, including enhancing the rate of uptake by the cells, is being made through the development of structure-property relationships in nanoparticles. We summarize here investigations related to transport pathways through active and passive mechanisms, and the role played by physico-chemical properties of nanoparticles, including size, geometry or shape, core-corona structure, surface chemistry, ligand binding and mechanical effects, in influencing intracellular delivery. It is becoming clear that designing nanoparticles with specific surface composition, and engineered physical and mechanical characteristics, can facilitate their internalization more efficiently into the targeted cells, as well as enhance the rate of cellular uptake.


Subject(s)
Drug Carriers/chemistry , Nanoparticles/chemistry , Polymers/chemistry , Animals , Biological Transport , Chemical Phenomena , Humans , Intracellular Space , Surface Properties
17.
Pharmaceutics ; 12(9)2020 Aug 30.
Article in English | MEDLINE | ID: mdl-32872618

ABSTRACT

Delivering active pharmaceutical agents to disease sites using soft polymeric nanoparticles continues to be a topical area of research. It is becoming increasingly evident that the composition of amphiphilic macromolecules plays a significant role in developing efficient nanoformulations. Branched architectures with asymmetric polymeric arms emanating from a central core junction have provided a pivotal venue to tailor their key parameters. The build-up of miktoarm stars offers vast polymer arm tunability, aiding in the development of macromolecules with adjustable properties, and allows facile inclusion of endogenous stimulus-responsive entities. Miktoarm star-based micelles have been demonstrated to exhibit denser coronae, very low critical micelle concentrations, high drug loading contents, and sustained drug release profiles. With significant advances in chemical methodologies, synthetic articulation of miktoarm polymer architecture, and determination of their structure-property relationships, are now becoming streamlined. This is helping advance their implementation into formulating efficient therapeutic interventions. This review brings into focus the important discoveries in the syntheses of miktoarm stars of varied compositions, their aqueous self-assembly, and contributions their formulations are making in advancing the field of drug delivery.

18.
Molecules ; 25(17)2020 Sep 02.
Article in English | MEDLINE | ID: mdl-32887285

ABSTRACT

Architectural complexity has played a key role in enhancing the efficacy of nanocarriers for a variety of applications, including those in the biomedical field. With the continued evolution in designing macromolecules-based nanoparticles for drug delivery, the combination approach of using important features of linear polymers with dendrimers has offered an advantageous and viable platform. Such nanostructures, which are commonly referred to as telodendrimers, are hybrids of linear polymers covalently linked with different dendrimer generations and backbones. There is considerable variety in selection from widely studied linear polymers and dendrimers, which can help tune the overall composition of the resulting hybrid structures. This review highlights the advances in articulating syntheses of these macromolecules, and the contributions these are making in facilitating therapeutic administration. Limited progress has been made in the design and synthesis of these hybrid macromolecules, and it is through an understanding of their physicochemical properties and aqueous self-assembly that one can expect to fully exploit their potential in drug delivery.


Subject(s)
Dendrimers/chemistry , Drug Delivery Systems , Polymers/chemistry , Drug Therapy, Combination , Polyesters/chemistry , Polyethylene Glycols/chemistry
19.
Sci Rep ; 10(1): 13358, 2020 08 07.
Article in English | MEDLINE | ID: mdl-32770089

ABSTRACT

We exploited two-photon microscopy and Doppler optical coherence tomography to examine the cerebral blood flow and tissue pO2 response to forced treadmill exercise in awake mice. To our knowledge, this is the first study performing both direct measure of brain tissue pO2 during acute forced exercise and underlying microvascular response at capillary and non-capillary levels. We observed that cerebral perfusion and oxygenation are enhanced during running at 5 m/min compared to rest. At faster running speeds (10 and 15 m/min), decreasing trends in arteriolar and capillary flow speed were observed, which could be due to cerebral autoregulation and constriction of arterioles in response to blood pressure increase. However, tissue pO2 was maintained, likely due to an increase in RBC linear density. Higher cerebral oxygenation at exercise levels 5-15 m/min suggests beneficial effects of exercise in situations where oxygen delivery to the brain is compromised, such as in aging, atherosclerosis and Alzheimer Disease.


Subject(s)
Cerebrovascular Circulation/physiology , Oxygen/metabolism , Physical Conditioning, Animal/physiology , Animals , Brain Chemistry/physiology , Male , Mice , Mice, Inbred C57BL , Microscopy, Confocal , Oxygen/analysis , Tomography, Optical Coherence
20.
J Mater Chem B ; 8(32): 7275-7287, 2020 08 19.
Article in English | MEDLINE | ID: mdl-32638822

ABSTRACT

Easily assembled and biocompatible chitosan/hyaluronic acid nanoparticles with multiple stimuli-responsive ability are ideally suited for efficient delivery of therapeutic agents under specific endogenous triggers. We report a simple and versatile strategy to formulate oxidative stress and pH-responsive chitosan/hyaluronic acid nanocarriers with high encapsulation efficiencies of small drug molecules and nerve growth factor protein. This is achieved through invoking the dual role of a thioketal-based weak organic acid to disperse and functionalize low molecular weight chitosan in one-pot. Thioketal embedded chitosan/hyaluronic acid nanostructures respond to oxidative stress and show controlled release of quercetin, curcumin and NGF. Lowering the pH in the buffer solution led to higher quercetin release from NPs than at physiological pH, and mimicked the nanoparticle behavior in the environment of early to late endosomes. Curcumin and quercetin loaded NPs killed glioblastoma cells with high efficiency, and NGF-loaded nanoparticles retained biological activity of the protein and increased peripheral nerve outgrowth in explanted mouse dorsal root ganglia.


Subject(s)
Chitosan/chemistry , Drug Carriers/chemistry , Drug Design , Hyaluronic Acid/chemistry , Nanoparticles/chemistry , Nerve Growth Factor/chemistry , Animals , Buffers , Ganglia, Spinal/drug effects , Ganglia, Spinal/growth & development , Mice , Nerve Growth Factor/pharmacology , Oxidative Stress/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...