Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ScientificWorldJournal ; 2014: 652968, 2014.
Article in English | MEDLINE | ID: mdl-24683351

ABSTRACT

The goal of the study presented in this paper is to investigate the performance of a new subcarrier allocation strategy for Orthogonal Frequency Division Multiple Access (OFDMA) multicellular networks which employ Multiple Input Multiple Output (MIMO) architecture. For this reason, a hybrid system-link level simulator has been developed executing independent Monte Carlo (MC) simulations in parallel. Up to two tiers of cells around the central cell are taken into consideration and increased loading per cell. The derived results indicate that this strategy can provide up to 12% capacity gain for 16-QAM modulation and two tiers of cells around the central cell in a symmetric 2 × 2 MIMO configuration. This gain is derived when comparing the proposed strategy to the traditional approach of allocating subcarriers that maximize only the desired user's signal.


Subject(s)
Computer Communication Networks , Wireless Technology , Models, Theoretical
2.
J Opt Soc Am A Opt Image Sci Vis ; 23(11): 2888-905, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17047717

ABSTRACT

A rigorous integral equation formulation in conjunction with Green's function theory is used to analyze the waveguiding and coupling phenomena in nonsymmetric (composed of dissimilar slabs) optical couplers with gratings etched on both slabs. The resulting integral equation is solved by applying an entire-domain Galerkin technique based on a Fourier series expansion of the unknown electric field on the grating regions. The proposed analysis actually constitutes a special type of the method of moments and provides high numerical stability and controllable accuracy. The singular points of the system's matrix accurately determine the complex propagation constants of the guided waves. The results obtained improve on those derived by coupled-mode methods in the cases of large grating perturbations and highly dissimilar slabs. Numerical results referring to the evolution of the propagation constants as a function of the grating's characteristics are presented. Optimal grating parameters with respect to minimum coupling length and maximum coupling efficiency are reported. The coupler's efficient operation as an optical bandpass filter is thoroughly investigated.

3.
J Opt Soc Am A Opt Image Sci Vis ; 23(6): 1488-502, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16715168

ABSTRACT

The propagation and coupling phenomena in grating-assisted optical couplers are analyzed by using an integral equation formulation and applying an entire-domain Galerkin technique. The proposed method constitutes a special type of the method of moments and provides high numerical stability and controllable accuracy. The electric field in the grating region is the unknown quantity and the resulting integral equation is subsequently solved by using Galerkin's method. The propagation constants of the guided waves are computed accurately by determining the singular points of the corresponding system's matrix. Numerical results regarding the propagation constants are presented for various coupler parameters, and the effect of the grating's physical and geometric characteristics on the coupling process is investigated.

SELECTION OF CITATIONS
SEARCH DETAIL
...