Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem ; 26(7): 1327-1332, 2018 04 01.
Article in English | MEDLINE | ID: mdl-28698052

ABSTRACT

A panel of microorganisms was screened for selective reduction ability towards a racemic mixture of prochiral 2-amino-3-methyl-4-ketopentanoate (rac-AMKP). Several of the microorganisms tested produced greater than 0.5mM 4-hydroxyisoleucine (HIL) from rac-AMKP, and the stereoselectivity of HIL formation was found to depend on the taxonomic category to which the microorganism belonged. The enzymes responsible for the AMKP-reducing activity, ApAR and FsAR, were identified from two of these microorganisms, Aureobasidium pullulans NBRC 4466 and Fusarium solani TG-2, respectively. Three AMKP reducing enzymes, ApAR, FsAR, and the previously reported BtHILDH, were reacted with rac-AMKP, and each enzyme selectively produced a specific composition of HIL stereoisomers. The enzymes appeared to have different characteristics in recognition of the stereostructure of the substrate AMKP and in control of the 4-hydroxyl group configuration in the HIL product.


Subject(s)
Alcohol Oxidoreductases/metabolism , Ascomycota/enzymology , Fusarium/enzymology , Isoleucine/analogs & derivatives , Amino Acid Sequence , Biocatalysis , Isoleucine/biosynthesis , Isoleucine/chemistry , Sequence Alignment
2.
Biochemistry ; 47(40): 10816-26, 2008 Oct 07.
Article in English | MEDLINE | ID: mdl-18781777

ABSTRACT

The mode of action of Deltalac-acetogenins, strong inhibitors of bovine heart mitochondrial complex I, is different from that of traditional inhibitors such as rotenone and piericidin A [Murai, M., et al. (2007) Biochemistry 46 , 6409-6416]. As further exploration of these unique inhibitors might provide new insights into the terminal electron transfer step of complex I, we drastically modified the structure of Deltalac-acetogenins and characterized their inhibitory action. In particular, on the basis of structural similarity between the bis-THF and the piperazine rings, we here synthesized a series of piperazine derivatives. Some of the derivatives exhibited very potent inhibition at nanomolar levels. The hydrophobicity of the side chains and their balance were important structural factors for the inhibition, as is the case for the original Deltalac-acetogenins. However, unlike in the case of the original Deltalac-acetogenins, (i) the presence of two hydroxy groups is not crucial for the activity, (ii) the level of superoxide production induced by the piperazines is relatively high, (iii) the inhibitory potency for the reverse electron transfer is remarkably weaker than that for the forward event, and (iv) the piperazines efficiently suppressed the specific binding of a photoaffinity probe of natural-type acetogenins ([ (125)I]TDA) to the ND1 subunit. We therefore conclude that the action mechanism of the piperazine series differs from that of the original Deltalac-acetogenins. The photoaffinity labeling study using a newly synthesized photoreactive piperazine ([ (125)I]AFP) revealed that this compound binds to the 49 kDa subunit and an unidentified subunit, not ND1, with a frequency of approximately 1:3. A variety of traditional complex I inhibitors as well as Deltalac-acetogenins suppressed the specific binding of [ (125)I]AFP to the subunits. The apparent competitive behavior of inhibitors that seem to bind to different sites may be due to structural changes at the binding site, rather than occupying the same site. The meaning of the occurrence of diverse inhibitors exhibiting different mechanisms of action is discussed in light of the functionality of the membrane arm of complex I.


Subject(s)
Electron Transport Complex I/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Mitochondria, Heart/enzymology , Piperazines/chemistry , Animals , Blotting, Western , Cattle , Electron Transport Complex I/metabolism , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Molecular Structure , Piperazine , Superoxides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...