Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Oncotarget ; 9(17): 13474-13487, 2018 Mar 02.
Article in English | MEDLINE | ID: mdl-29568371

ABSTRACT

The CDK8/19 kinase module comprises a subcomplex that interacts with the Mediator complex and regulates gene expression through phosphorylation of transcription factors and Mediator subunits. Mediator complex subunits have been increasingly implicated in cancer and other diseases. Although high expression of CDK8/19 has been demonstrated in prostate cancer, its function has not been thoroughly examined. Here we report that CDK8/19 modulates the gene expression of cell cycle regulators and thereby maintains the proper G1/S transition in prostate cancer cells. We show that highly selective CDK8/19 inhibitors exerted anti-proliferative activity in prostate cancer cells both in vitro and in vivo. In CDK8/19 inhibitor-sensitive prostate cancer cells, the compounds reduced the population of G1 phase cells and elevated that of S phase cells through the modulation of G1/S transition regulators at the level of mRNA expression. Furthermore, the premature G1/S transition induced a DNA damage response that was followed by ATR-dependent and caspase-independent cell death. These findings suggest a novel role of CDK8/19 in transcription-mediated cell cycle control, albeit with possible contribution of other proteins inhibited by the compounds. Our data provide a rationale for further investigation of CDK8/19 inhibitors as a new therapeutic approach to prostate cancer.

2.
Mol Cancer Ther ; 12(6): 913-24, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23548264

ABSTRACT

The c-Met receptor tyrosine kinase and its ligand, hepatocyte growth factor (HGF), are dysregulated in a wide variety of human cancers and are linked with tumorigenesis and metastatic progression. VEGF also plays a key role in tumor angiogenesis and progression by stimulating the proangiogenic signaling of endothelial cells via activation of VEGF receptor tyrosine kinases (VEGFR). Therefore, inhibiting both HGF/c-Met and VEGF/VEGFR signaling may provide a novel therapeutic approach for treating patients with a broad spectrum of tumors. Toward this goal, we generated and characterized T-1840383, a small-molecule kinase inhibitor that targets both c-Met and VEGFRs. T-1840383 inhibited HGF-induced c-Met phosphorylation and VEGF-induced VEGFR-2 phosphorylation in cancer epithelial cells and vascular endothelial cells, respectively. It also inhibited constitutively activated c-Met phosphorylation in c-met-amplified cancer cells, leading to suppression of cell proliferation. In addition, T-1840383 potently blocked VEGF-dependent proliferation and capillary tube formation of endothelial cells. Following oral administration, T-1840383 showed potent antitumor efficacy in a wide variety of human tumor xenograft mouse models, along with reduction of c-Met phosphorylation levels and microvessel density within tumor xenografts. These results suggest that the efficacy of T-1840383 is produced by direct effects on tumor cell growth and by an antiangiogenic mechanism. Furthermore, T-1840383 showed profound antitumor activity in a gastric tumor peritoneal dissemination model. Collectively, our findings indicate the therapeutic potential of targeting both c-Met and VEGFRs simultaneously with a single small-molecule inhibitor for the treatment of human cancers.


Subject(s)
Hepatocyte Growth Factor/genetics , Heterocyclic Compounds, 2-Ring/administration & dosage , Niacinamide/analogs & derivatives , Protein Kinase Inhibitors/administration & dosage , Proto-Oncogene Proteins c-met/genetics , Stomach Neoplasms/drug therapy , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Angiogenesis Inhibitors/administration & dosage , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Endothelial Cells/drug effects , Endothelial Cells/pathology , Gene Expression Regulation, Neoplastic/drug effects , Hepatocyte Growth Factor/antagonists & inhibitors , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Mice , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/pathology , Niacinamide/administration & dosage , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Signal Transduction/drug effects , Stomach Neoplasms/blood supply , Stomach Neoplasms/pathology , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism , Xenograft Model Antitumor Assays
3.
Cancer Sci ; 104(4): 486-94, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23305239

ABSTRACT

We recently reported that TAK-593, a novel imidazo[1,2-b]pyridazine derivative, is a highly potent and selective inhibitor of the vascular endothelial growth factor (VEGF) and platelet derived growth factor (PDGF) receptor tyrosine kinase families. Moreover, TAK-593 exhibits a uniquely long-acting inhibitory profile towards VEGF receptor 2 (VEGFR2) and PDGF receptor ß (PDGFRß). In this study, we demonstrated that TAK-593 potently inhibits VEGF- and PDGF-stimulated cellular phosphorylation and proliferation of human umbilical vein endothelial cells and human coronary artery smooth muscle cells. TAK-593 also potently inhibits VEGF-induced tube formation of endothelial cells co-cultured with fibroblasts. Oral administration of TAK-593 exhibited strong anti-tumor effects against various human cancer xenografts along with good tolerability despite a low level of plasma exposure. Even after the blood and tissue concentrations of TAK-593 decreased below the detectable limit, a pharmacodynamic marker (phospho VEGFR2) was almost completely suppressed, indicating that its long duration of enzyme inhibition might contribute to the potent activity of TAK-593. Immunohistochemical staining indicated that TAK-593 showed anti-proliferative and pro-apoptotic effects on tumors along with a decrease of vessel density and inhibition of pericyte recruitment to microvessels in vivo. Furthermore, dynamic contrast-enhanced magnetic resonance imaging revealed that TAK-593 reduced tumor vessel permeability prior to the onset of anti-tumor activity. In conclusion, TAK-593 is an extremely potent VEGFR/PDGFR kinase inhibitor whose potent anti-angiogenic activity suggests therapeutic potential for the treatment of solid tumors.


Subject(s)
Angiogenesis Inhibitors/therapeutic use , Antineoplastic Agents/therapeutic use , Azabicyclo Compounds/therapeutic use , Neoplasms/drug therapy , Pyrazoles/therapeutic use , Receptors, Platelet-Derived Growth Factor/antagonists & inhibitors , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Animals , Apoptosis/drug effects , Azabicyclo Compounds/pharmacology , Capillary Permeability/drug effects , Cell Proliferation/drug effects , Humans , Mice , Mice, Nude , Mice, SCID , Neoplasms/blood supply , Neovascularization, Pathologic/drug therapy , Pyrazoles/pharmacology , Xenograft Model Antitumor Assays
4.
Chem Pharm Bull (Tokyo) ; 59(10): 1268-73, 2011.
Article in English | MEDLINE | ID: mdl-21963637

ABSTRACT

Acyl-CoA: cholesterol acyltransferase (ACAT) is an intracellular enzyme that catalyzes cholesterol esterification. ACAT inhibitors are expected to be potent therapeutic agents for the treatment of atherosclerosis. A series of potent ACAT inhibitors based on an (4-phenylcoumarin)acetanilide scaffold was identified. Evaluation of the structure-activity relationships of a substituent on this scaffold, with an emphasis on improving the pharmacokinetic profile led to the discovery of 2-[7-chloro-4-(3-chlorophenyl)-6-methyl-2-oxo-2H-chromen-3-yl]-N-[4-chloro-2-(trifluoromethyl)phenyl]acetamide (23), which exhibited potent ACAT inhibitory activity (IC50=12 nM) and good pharmacokinetic profile in mice. Compound 23 also showed regressive effects on atherosclerotic plaques in apolipoprotein (apo)E knock out (KO) mice at a dose of 0.3 mg/kg per os (p.o.).


Subject(s)
Acetamides/chemical synthesis , Acetamides/pharmacology , Acetamides/pharmacokinetics , Acyl Coenzyme A/antagonists & inhibitors , Anticholesteremic Agents/pharmacology , Atherosclerosis/metabolism , Benzopyrans/chemical synthesis , Benzopyrans/pharmacology , Benzopyrans/pharmacokinetics , Enzyme Inhibitors/pharmacology , Acetamides/chemistry , Acetanilides/chemistry , Administration, Oral , Animals , Anticholesteremic Agents/chemical synthesis , Anticholesteremic Agents/chemistry , Anticholesteremic Agents/pharmacokinetics , Apolipoproteins/metabolism , Benzopyrans/chemistry , Cholesterol/metabolism , Coumarins/chemistry , Dose-Response Relationship, Drug , Drug Discovery , Drug Evaluation, Preclinical , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Molecular Targeted Therapy , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...