Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E Stat Nonlin Soft Matter Phys ; 70(5 Pt 2): 056401, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15600759

ABSTRACT

An efficient acceleration of energetic ions is observed when small heavy-water droplets of approximately 20 microm diameter are exposed to ultrafast (approximately 40 fs) Ti:sapphire laser pulses of up to 10(19) W/cm2 intensity. Quantitative measurements of deuteron and neutron spectra were done, allowing one to analyze the outward and inward directed deuteron acceleration from the droplet. Neutron spectroscopy based on the D (d,n) fusion reaction was accomplished in four different spatial directions. The energy shifts of those fusion neutrons produced inside the exploding droplet reflect a remaining deuteron acceleration inside the irradiated droplet along the axis of the incident laser beam. The overall neutron yield of the microdroplets is relatively small as a result of the dominant outward directed acceleration of the deuterons with 1200 neutrons/shot. Relying on the "explosion-like" acceleration of such spherical droplet targets we have developed a spray target consisting of heavy-water microspheres with diameters of 150 nm . Both the high deuteron energies of up to 1 MeV resulting from the irradiation intensity of approximately 10(19) W/cm2 as well as the collisions between the deuterons and the surrounding spray delivered about one order of magnitude more neutrons than the single-droplet system. The approximately 6 x 10(3) neutrons per laser pulse from the spray can be attributed to an efficient deuteron release from a significantly smaller laser excited volume as from deuterium-cluster targets.

SELECTION OF CITATIONS
SEARCH DETAIL
...