Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(10): 11200-11216, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38496978

ABSTRACT

Medicinally valuable components derived from natural resources are highly desirable as prospective alternatives to synthetic drugs to treat fatal diseases, such as cancer and diabetes mellitus. Suaeda maritima (L.) Dumort (Amaranthaceae) (S. maritima) is a halophyte plant that can thrive in saline environments and possesses excellent medicinal properties. Hence, for the present investigation, S. maritima has been chosen, and its phytochemical constituents have been extracted utilizing various solvents, including hexane, acetone, and methanol, and identified by GC-MS, LC-MS, and HPLC analyses. The antioxidant activity of the compounds using DPPH, ABTS, and reducing power assays demonstrated that all three extracts of S. maritima possessed significant radical scavenging activity comparable to standard ascorbic acid with lower IC50 values (69.20-95.58 µg/mL). In addition, the evaluation of antidiabetic activity by α-amylase inhibition and α-glucosidase inhibition methods revealed that the acetone extract of S. maritima (SMAE) displayed equipotent activity of standard acarbose with an IC50 of 32.6 µg/mL. Advantageously, SMAE also exhibited better inhibition activity against the growth of lung cancer cells with an IC50 of 78.19. µg/mL and less toxicity on the noncancerous HUVEC cells with a high IC50 of 300 µg/mL. In addition, the cancer cell death mechanism via the apoptotic pathway induced by SMAE was confirmed by DAPI staining and ROS analysis. The analysis of ADME properties, including absorption, distribution, metabolism, and excretion, witnessed that the physicochemical and druglikeness factors were best catered by stigmasterol, γ-sitosterol, and vitamin E. Further, the key phytochemicals identified from SMAE were docked with CtBP1 and SOX2 bound to importin-α target proteins associated with carcinogenic pathways using Schrodinger software. The results showed that the phytochemicals, scilicet, stigmasterol, γ-sitosterol, octadecadienoic acid, and vitamin E, showed a good binding affinity with Glide scores in the range -2.845-4.018 kcal/mol. Overall, the findings support that the least investigated traditional edible medicinal mangrove-related S. maritima is high in pharmacologically active constituents and might be one of the finest sources of naturally derived molecules for drug development and delivery systems.

2.
Inorg Chem ; 58(12): 8045-8055, 2019 Jun 17.
Article in English | MEDLINE | ID: mdl-31124672

ABSTRACT

Tetranuclear organopalladium(II) complexes 1-3 and mononuclear complex 4 have been synthesized by the complexation of 3-acetyl-7-methoxy-2 H-chromen-2-one derived Schiff bases with potassium tetrachloropalladate K2[PdCl4]. Structural confirmation for the complexes (1-3) has been achieved by single-crystal X-ray diffraction analysis. The ligands are found to bind with the palladium ion through its azomethine nitrogen, thiolate sulfur, and C4 carbon atom of the coumarin moiety subsequent to C-H activation. The monomeric nature of complex 4 was confirmed from its mass spectroscopic data. In complex 4, coordination occurred via the lactone oxygen, azomethine nitrogen, and thiolate sulfur atoms. Computational study has been used to determine the optimized molecular structures of the complexes. An explanation on the energies of their highest occupied and lowest unoccupied molecular orbital levels and their electronic spectra has also been provided on the basis of the theoretical calculations. A systematic study of the application of these complexes as catalysts in Suzuki-Miyaura coupling (SMC) has been done with different aryl halides and phenyl boronic acid in an aqueous medium. Optimization of the reaction indicated that complex 2 exhibits greater efficiency than other complexes. An appreciable yield of the coupled products was observed with the minimum use of catalyst (µmol), and the C-C coupling has been confirmed by GC/GC-MS. An interesting result of our catalyst is the coupling of four different chloroquinolines with phenyl boronic acid to afford the coupled products in good yields.

SELECTION OF CITATIONS
SEARCH DETAIL
...